简要:
EigenFace是基于PCA降维的人脸识别算法,PCA是使整体数据降维后的方差最大,没有考虑降维后类间的变化。 它是将图像每一个像素当作一维特征,然后用SVM或其它机器学习算法进行训练。但这样维数太多,根本无法计算。我这里用的是ORL人脸数据库,英国剑桥实验室拍摄的,有40位志愿者的人脸,在不同表情不同光照下每位志愿者拍摄10张,共有400张图片,大小为112*92,所以如果把每个像素当做特征拿来训练的话,一张人脸就有10304维特征,这么高维的数据根本无法处理。所以需要先对数据进行降维,去掉一些冗余的特征。
第一步:将ORL人脸图片的地址统一放在一个文件里,等会通过对该文件操作,将图片全部加载进来。
1
2
3
4
5
6
7
8
9
10
|
//ofstream一般对文件进行读写操作,ifstream一般对文件进行读操作 ofstream file; file.open( "path.txt" ); //新建并打开文件 char str[50] = {}; for ( int i = 1; i <= 40; i++) { for ( int j = 1; j <= 10; j++) { sprintf_s(str, "orl_faces/s%d/%d.pgm;%d" , i, j, i); //将数字转换成字符 file << str << endl; //写入 } } |
得到路劲文件如下图所示:
第二步:读入模型需要输入的数据,即用来训练的图像vector<Mat>images和标签vector<int>labels
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
string filename = string( "path.txt" ); ifstream file(filename); if (!file) { printf ( "could not load file" ); } vector<Mat>images; vector< int >labels; char separator = ';' ; string line,path, classlabel; while (getline(file,line)) { stringstream lines(line); getline(lines, path, separator); getline(lines, classlabel); images.push_back(imread(path, 0)); labels.push_back( atoi (classlabel.c_str())); //atoi(ASCLL to int)将字符串转换为整数型 } |
第三步:加载、训练、预测模型
1
2
3
4
|
Ptr<BasicFaceRecognizer> model = EigenFaceRecognizer::create(); model->train(images, labels); int predictedLabel = model->predict(testSample); printf ( "actual label:%d,predict label :%d\n" , testLabel, predictedLabel); |
补充:
1、显示平均脸
1
2
3
4
5
6
7
8
9
10
11
12
|
//计算特征值特征向量及平均值 Mat vals = model->getEigenValues(); //89*1 printf ( "%d,%d\n" , vals.rows, vals.cols); Mat vecs = model->getEigenVectors(); //10324*89 printf ( "%d,%d\n" , vecs.rows, vecs.cols); Mat mean = model->getMean(); //1*10304 printf ( "%d,%d\n" , mean.rows, mean.cols); //显示平均脸 Mat meanFace = mean.reshape(1, height); //第一个参数为通道数,第二个参数为多少行 normalize(meanFace, meanFace, 0, 255, NORM_MINMAX, CV_8UC1); imshow( "Mean Face" , meanFace); |
2、显示前部分特征脸
1
2
3
4
5
6
7
8
9
10
11
|
//显示特征脸 for ( int i = 0; i<min(10, vals.rows); i++) { Mat feature_vec = vecs.col(i).clone(); Mat feature_face= feature_vec.reshape(1, height); normalize(feature_face, feature_face, 0, 255, NORM_MINMAX, CV_8UC1); Mat colorface; applyColorMap(feature_face, colorface, COLORMAP_BONE); sprintf_s(win_title, "eigenface%d" , i); imshow(win_title, colorface); } |
3、对第一张人脸在特征向量空间进行人脸重建(分别基于前10,20,30,40,50,60个特征向量进行人脸重建)
1
2
3
4
5
6
7
8
9
10
11
|
//重建人脸 for ( int i = min(10, vals.rows); i <min(61, vals.rows); i+=10) { Mat vecs_space = Mat(vecs, Range::all(), Range(0, i)); Mat projection = LDA::subspaceProject(vecs_space, mean, images[0].reshape(1, 1)); //投影到子空间 Mat reconstruction = LDA::subspaceReconstruct(vecs_space, mean, projection); //重建 Mat result = reconstruction.reshape(1, height); normalize(result, result, 0, 255, NORM_MINMAX, CV_8UC1); //char wintitle[40] = {}; sprintf_s(win_title, "recon face %d" , i); imshow(win_title, result); } |
完整代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
|
#include<opencv2\opencv.hpp> #include<opencv2\face.hpp> using namespace cv; using namespace face; using namespace std; char win_title[40] = {}; int main( int arc, char ** argv) { namedWindow( "input" ,CV_WINDOW_AUTOSIZE); //读入模型需要输入的数据,用来训练的图像vector<Mat>images和标签vector<int>labels string filename = string( "path.txt" ); ifstream file(filename); if (!file) { printf ( "could not load file" ); } vector<Mat>images; vector< int >labels; char separator = ';' ; string line,path, classlabel; while (getline(file,line)) { stringstream lines(line); getline(lines, path, separator); getline(lines, classlabel); //printf("%d\n", atoi(classlabel.c_str())); images.push_back(imread(path, 0)); labels.push_back( atoi (classlabel.c_str())); //atoi(ASCLL to int)将字符串转换为整数型 } int height = images[0].rows; int width = images[0].cols; printf ( "height:%d,width:%d\n" , height, width); //将最后一个样本作为测试样本 Mat testSample = images[images.size() - 1]; int testLabel = labels[labels.size() - 1]; //删除列表末尾的元素 images.pop_back(); labels.pop_back(); //加载,训练,预测 Ptr<BasicFaceRecognizer> model = EigenFaceRecognizer::create(); model->train(images, labels); int predictedLabel = model->predict(testSample); printf ( "actual label:%d,predict label :%d\n" , testLabel, predictedLabel); //计算特征值特征向量及平均值 Mat vals = model->getEigenValues(); //89*1 printf ( "%d,%d\n" , vals.rows, vals.cols); Mat vecs = model->getEigenVectors(); //10324*89 printf ( "%d,%d\n" , vecs.rows, vecs.cols); Mat mean = model->getMean(); //1*10304 printf ( "%d,%d\n" , mean.rows, mean.cols); //显示平均脸 Mat meanFace = mean.reshape(1, height); //第一个参数为通道数,第二个参数为多少行 normalize(meanFace, meanFace, 0, 255, NORM_MINMAX, CV_8UC1); imshow( "Mean Face" , meanFace); //显示特征脸 for ( int i = 0; i<min(10, vals.rows); i++) { Mat feature_vec = vecs.col(i).clone(); Mat feature_face= feature_vec.reshape(1, height); normalize(feature_face, feature_face, 0, 255, NORM_MINMAX, CV_8UC1); Mat colorface; applyColorMap(feature_face, colorface, COLORMAP_BONE); sprintf_s(win_title, "eigenface%d" , i); imshow(win_title, colorface); } //重建人脸 for ( int i = min(10, vals.rows); i <min(61, vals.rows); i+=10) { Mat vecs_space = Mat(vecs, Range::all(), Range(0, i)); Mat projection = LDA::subspaceProject(vecs_space, mean, images[0].reshape(1, 1)); Mat reconstruction = LDA::subspaceReconstruct(vecs_space, mean, projection); Mat result = reconstruction.reshape(1, height); normalize(result, result, 0, 255, NORM_MINMAX, CV_8UC1); //char wintitle[40] = {}; sprintf_s(win_title, "recon face %d" , i); imshow(win_title, result); } waitKey(0); return 0; } |
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/qq_24946843/article/details/82876629