脚本之家,脚本语言编程技术及教程分享平台!
分类导航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服务器之家 - 脚本之家 - Python - python使用pymongo操作mongo的完整步骤

python使用pymongo操作mongo的完整步骤

2021-06-15 01:07迎风而来 Python

这篇文章主要给大家介绍了关于python使用pymongo操作mongo的完整步骤,文中通过示例代码介绍的非常详细,对大家学习或者使用python具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧

前言

mongodb是由c++语言编写的非关系型数据库,是一个基于分布式文件存储的开源数据库系统,其内容存储形式类似json对象,它的字段值可以包含其他文档、数组及文档数组,非常灵活。在这一节中,我们就来看看python 3下mongodb的存储操作。

1. 准备工作

在开始之前,请确保已经安装好了mongodb并启动了其服务,并且安装好了python的pymongo库。

2. 连接mongodb

连接mongodb时,我们需要使用pymongo库里面的mongoclient。一般来说,传入mongodb的ip及端口即可,其中第一个参数为地址host,第二个参数为端口port(如果不给它传递参数,默认是27017):

?
1
2
import pymongo
client = pymongo.mongoclient(host='localhost', port=27017)

这样就可以创建mongodb的连接对象了。

另外,mongoclient的第一个参数host还可以直接传入mongodb的连接字符串,它以mongodb开头,例如:

?
1
client = mongoclient('mongodb://localhost:27017/')

这也可以达到同样的连接效果。

3. 指定数据库

mongodb中可以建立多个数据库,接下来我们需要指定操作哪个数据库。这里我们以test数据库为例来说明,下一步需要在程序中指定要使用的数据库:

?
1
db = client.test

这里调用client的test属性即可返回test数据库。当然,我们也可以这样指定:

?
1
db = client['test']

这两种方式是等价的。

4. 指定集合

mongodb的每个数据库又包含许多集合(collection),它们类似于关系型数据库中的表。

下一步需要指定要操作的集合,这里指定一个集合名称为students。与指定数据库类似,指定集合也有两种方式:

?
1
collection = db.students
?
1
collection = db['students']

这样我们便声明了一个collection对象。

5. 插入数据

接下来,便可以插入数据了。对于students这个集合,新建一条学生数据,这条数据以字典形式表示:

?
1
2
3
4
5
6
student = {
 'id': '20170101',
 'name': 'jordan',
 'age': 20,
 'gender': 'male'
}

这里指定了学生的学号、姓名、年龄和性别。接下来,直接调用collection的insert()方法即可插入数据,代码如下:

?
1
2
result = collection.insert(student)
print(result)

在mongodb中,每条数据其实都有一个_id属性来唯一标识。如果没有显式指明该属性,mongodb会自动产生一个objectid类型的_id属性。insert()方法会在执行后返回_id值。

运行结果如下:

5932a68615c2606814c91f3d

当然,我们也可以同时插入多条数据,只需要以列表形式传递即可,示例如下:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
student1 = {
 'id': '20170101',
 'name': 'jordan',
 'age': 20,
 'gender': 'male'
}
 
student2 = {
 'id': '20170202',
 'name': 'mike',
 'age': 21,
 'gender': 'male'
}
 
result = collection.insert([student1, student2])
print(result)

返回结果是对应的_id的集合:

[objectid('5932a80115c2606a59e8a048'), objectid('5932a80115c2606a59e8a049')]

实际上,在pymongo 3.x版本中,官方已经不推荐使用insert()方法了。当然,继续使用也没有什么问题。官方推荐使用insert_one()和insert_many()方法来分别插入单条记录和多条记录,示例如下:

?
1
2
3
4
5
6
7
8
9
10
student = {
 'id': '20170101',
 'name': 'jordan',
 'age': 20,
 'gender': 'male'
}
 
result = collection.insert_one(student)
print(result)
print(result.inserted_id)

运行结果如下:

<pymongo.results.insertoneresult object at 0x10d68b558>
5932ab0f15c2606f0c1cf6c5

与insert()方法不同,这次返回的是insertoneresult对象,我们可以调用其inserted_id属性获取_id。

对于insert_many()方法,我们可以将数据以列表形式传递,示例如下:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
student1 = {
 'id': '20170101',
 'name': 'jordan',
 'age': 20,
 'gender': 'male'
}
 
student2 = {
 'id': '20170202',
 'name': 'mike',
 'age': 21,
 'gender': 'male'
}
 
result = collection.insert_many([student1, student2])
print(result)
print(result.inserted_ids)

运行结果如下:

<pymongo.results.insertmanyresult object at 0x101dea558>
[objectid('5932abf415c2607083d3b2ac'), objectid('5932abf415c2607083d3b2ad')]

该方法返回的类型是insertmanyresult,调用inserted_ids属性可以获取插入数据的_id列表。

6. 查询

插入数据后,我们可以利用find_one()或find()方法进行查询,其中find_one()查询得到的是单个结果,find()则返回一个生成器对象。示例如下:

?
1
2
3
result = collection.find_one({'name': 'mike'})
print(type(result))
print(result)

这里我们查询name为mike的数据,它的返回结果是字典类型,运行结果如下:

<class 'dict'>
{'_id': objectid('5932a80115c2606a59e8a049'), 'id': '20170202', 'name': 'mike', 'age': 21, 'gender': 'male'}

可以发现,它多了_id属性,这就是mongodb在插入过程中自动添加的。

此外,我们也可以根据objectid来查询,此时需要使用bson库里面的objectid:

?
1
2
3
4
from bson.objectid import objectid
 
result = collection.find_one({'_id': objectid('593278c115c2602667ec6bae')})
print(result)

其查询结果依然是字典类型,具体如下:

{'_id': objectid('593278c115c2602667ec6bae'), 'id': '20170101', 'name': 'jordan', 'age': 20, 'gender': 'male'}

当然,如果查询结果不存在,则会返回none。

对于多条数据的查询,我们可以使用find()方法。例如,这里查找年龄为20的数据,示例如下:

?
1
2
3
4
results = collection.find({'age': 20})
print(results)
for result in results:
 print(result)

运行结果如下:

<pymongo.cursor.cursor object at 0x1032d5128>
{'_id': objectid('593278c115c2602667ec6bae'), 'id': '20170101', 'name': 'jordan', 'age': 20, 'gender': 'male'}
{'_id': objectid('593278c815c2602678bb2b8d'), 'id': '20170102', 'name': 'kevin', 'age': 20, 'gender': 'male'}
{'_id': objectid('593278d815c260269d7645a8'), 'id': '20170103', 'name': 'harden', 'age': 20, 'gender': 'male'}

返回结果是cursor类型,它相当于一个生成器,我们需要遍历取到所有的结果,其中每个结果都是字典类型。

如果要查询年龄大于20的数据,则写法如下:

?
1
results = collection.find({'age': {'$gt': 20}})

这里查询的条件键值已经不是单纯的数字了,而是一个字典,其键名为比较符号$gt,意思是大于,键值为20。

这里将比较符号归纳为下表。

 

符号 含义 示例
$lt 小于 {'age': {'$lt': 20}}
$gt 大于 {'age': {'$gt': 20}}
$lte 小于等于 {'age': {'$lte': 20}}
$gte 大于等于 {'age': {'$gte': 20}}
$ne 不等于 {'age': {'$ne': 20}}
$in 在范围内 {'age': {'$in': [20, 23]}}
$nin 不在范围内 {'age': {'$nin': [20, 23]}}

 

另外,还可以进行正则匹配查询。例如,查询名字以m开头的学生数据,示例如下:

?
1
results = collection.find({'name': {'$regex': '^m.*'}})

这里使用$regex来指定正则匹配,^m.*代表以m开头的正则表达式。

这里将一些功能符号再归类为下表。

 

符号 含义 示例 示例含义
$regex 匹配正则表达式 {'name': {'$regex': '^m.*'}} name以m开头
$exists 属性是否存在 {'name': {'$exists': true}} name属性存在
$type 类型判断 {'age': {'$type': 'int'}} age的类型为int
$mod 数字模操作 {'age': {'$mod': [5, 0]}} 年龄模5余0
$text 文本查询 {'$text': {'$search': 'mike'}} text类型的属性中包含mike字符串
$where 高级条件查询 {'$where': 'obj.fans_count == obj.follows_count'} 自身粉丝数等于关注数

 

关于这些操作的更详细用法,可以在mongodb官方文档找到:
https://docs.mongodb.com/manual/reference/operator/query/。

7. 计数

要统计查询结果有多少条数据,可以调用count()方法。比如,统计所有数据条数:

?
1
2
count = collection.find().count()
print(count)

或者统计符合某个条件的数据:

?
1
2
count = collection.find({'age': 20}).count()
print(count)

运行结果是一个数值,即符合条件的数据条数。

8. 排序

排序时,直接调用sort()方法,并在其中传入排序的字段及升降序标志即可。示例如下:

?
1
2
results = collection.find().sort('name', pymongo.ascending)
print([result['name'] for result in results])

运行结果如下:

['harden', 'jordan', 'kevin', 'mark', 'mike']

这里我们调用pymongo.ascending指定升序。如果要降序排列,可以传入pymongo.descending。

9. 偏移

在某些情况下,我们可能想只取某几个元素,这时可以利用skip()方法偏移几个位置,比如偏移2,就忽略前两个元素,得到第三个及以后的元素:

?
1
2
results = collection.find().sort('name', pymongo.ascending).skip(2)
print([result['name'] for result in results])

运行结果如下:

['kevin', 'mark', 'mike']

另外,还可以用limit()方法指定要取的结果个数,示例如下:

?
1
2
results = collection.find().sort('name', pymongo.ascending).skip(2).limit(2)
print([result['name'] for result in results])

运行结果如下:

['kevin', 'mark']

如果不使用limit()方法,原本会返回三个结果,加了限制后,会截取两个结果返回。

值得注意的是,在数据库数量非常庞大的时候,如千万、亿级别,最好不要使用大的偏移量来查询数据,因为这样很可能导致内存溢出。此时可以使用类似如下操作来查询:

?
1
2
from bson.objectid import objectid
collection.find({'_id': {'$gt': objectid('593278c815c2602678bb2b8d')}})

这时需要记录好上次查询的_id。

10. 更新

对于数据更新,我们可以使用update()方法,指定更新的条件和更新后的数据即可。例如:

?
1
2
3
4
5
condition = {'name': 'kevin'}
student = collection.find_one(condition)
student['age'] = 25
result = collection.update(condition, student)
print(result)

这里我们要更新name为kevin的数据的年龄:首先指定查询条件,然后将数据查询出来,修改年龄后调用update()方法将原条件和修改后的数据传入。

运行结果如下:

{'ok': 1, 'nmodified': 1, 'n': 1, 'updatedexisting': true}

返回结果是字典形式,ok代表执行成功,nmodified代表影响的数据条数。

另外,我们也可以使用$set操作符对数据进行更新,代码如下:

?
1
result = collection.update(condition, {'$set': student})

这样可以只更新student字典内存在的字段。如果原先还有其他字段,则不会更新,也不会删除。而如果不用$set的话,则会把之前的数据全部用student字典替换;如果原本存在其他字段,则会被删除。

另外,update()方法其实也是官方不推荐使用的方法。这里也分为update_one()方法和update_many()方法,用法更加严格,它们的第二个参数需要使用$类型操作符作为字典的键名,示例如下:

?
1
2
3
4
5
6
condition = {'name': 'kevin'}
student = collection.find_one(condition)
student['age'] = 26
result = collection.update_one(condition, {'$set': student})
print(result)
print(result.matched_count, result.modified_count)

这里调用了update_one()方法,第二个参数不能再直接传入修改后的字典,而是需要使用{'$set': student}这样的形式,其返回结果是updateresult类型。然后分别调用matched_count和modified_count属性,可以获得匹配的数据条数和影响的数据条数。

运行结果如下:

<pymongo.results.updateresult object at 0x10d17b678>
1 0

我们再看一个例子:

?
1
2
3
4
condition = {'age': {'$gt': 20}}
result = collection.update_one(condition, {'$inc': {'age': 1}})
print(result)
print(result.matched_count, result.modified_count)

这里指定查询条件为年龄大于20,然后更新条件为{'$inc': {'age': 1}},也就是年龄加1,执行之后会将第一条符合条件的数据年龄加1。

运行结果如下:

<pymongo.results.updateresult object at 0x10b8874c8>
1 1

可以看到匹配条数为1条,影响条数也为1条。

如果调用update_many()方法,则会将所有符合条件的数据都更新,示例如下:

?
1
2
3
4
condition = {'age': {'$gt': 20}}
result = collection.update_many(condition, {'$inc': {'age': 1}})
print(result)
print(result.matched_count, result.modified_count)

这时匹配条数就不再为1条了,运行结果如下:

<pymongo.results.updateresult object at 0x10c6384c8>
3 3

可以看到,这时所有匹配到的数据都会被更新。

11. 删除

删除操作比较简单,直接调用remove()方法指定删除的条件即可,此时符合条件的所有数据均会被删除。示例如下:

?
1
2
result = collection.remove({'name': 'kevin'})
print(result)

运行结果如下:

{'ok': 1, 'n': 1}

另外,这里依然存在两个新的推荐方法——delete_one()和delete_many()。示例如下:

?
1
2
3
4
5
result = collection.delete_one({'name': 'kevin'})
print(result)
print(result.deleted_count)
result = collection.delete_many({'age': {'$lt': 25}})
print(result.deleted_count)

运行结果如下:

<pymongo.results.deleteresult object at 0x10e6ba4c8>
1
4

delete_one()即删除第一条符合条件的数据,delete_many()即删除所有符合条件的数据。它们的返回结果都是deleteresult类型,可以调用deleted_count属性获取删除的数据条数。

12. 其他操作

另外,pymongo还提供了一些组合方法,如find_one_and_delete()、find_one_and_replace()和find_one_and_update(),它们是查找后删除、替换和更新操作,其用法与上述方法基本一致。

另外,还可以对索引进行操作,相关方法有create_index()、create_indexes()和drop_index()等。

关于pymongo的详细用法,可以参见官方文档:http://api.mongodb.com/python/current/api/pymongo/collection.html。

另外,还有对数据库和集合本身等的一些操作,这里不再一一讲解,可以参见官方文档:http://api.mongodb.com/python/current/api/pymongo/。

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对服务器之家的支持。

原文链接:https://www.cnblogs.com/sui776265233/p/10501909.html

延伸 · 阅读

精彩推荐