本文实例为大家分享了二维插值的三维显示具体代码,供大家参考,具体内容如下
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
|
# -*- coding: utf-8 -*- """ 演示二维插值。 """ # -*- coding: utf-8 -*- import numpy as np from mpl_toolkits.mplot3d import axes3d import matplotlib as mpl from scipy import interpolate import matplotlib.cm as cm import matplotlib.pyplot as plt def func(x, y): return (x + y) * np.exp( - 5.0 * (x * * 2 + y * * 2 )) # x-y轴分为20*20的网格 x = np.linspace( - 1 , 1 , 20 ) y = np.linspace( - 1 , 1 , 20 ) x, y = np.meshgrid(x, y) # 20*20的网格数据 fvals = func(x, y) # 计算每个网格点上的函数值 15*15的值 fig = plt.figure(figsize = ( 9 , 6 )) #设置图的大小 # draw sub-graph1 ax = plt.subplot( 1 , 2 , 1 , projection = '3d' ) #设置图的位置 surf = ax.plot_surface(x, y, fvals, rstride = 2 , cstride = 2 , cmap = cm.coolwarm, linewidth = 0.5 , antialiased = true) #第四个第五个参数表示隔多少个取样点画一个小面,第六个表示画图类型,第七个是画图的线宽,第八个表示抗锯齿 ax.set_xlabel( 'x' ) ax.set_ylabel( 'y' ) ax.set_zlabel( 'f(x, y)' ) #标签 plt.colorbar(surf, shrink = 0.5 , aspect = 5 ) # 标注 # 二维插值 newfunc = interpolate.interp2d(x, y, fvals, kind = 'cubic' ) # newfunc为一个函数 # 计算100*100的网格上的插值 xnew = np.linspace( - 1 , 1 , 100 ) # x ynew = np.linspace( - 1 , 1 , 100 ) # y fnew = newfunc(xnew, ynew) # 仅仅是y值 100*100的值 np.shape(fnew) is 100*100 xnew, ynew = np.meshgrid(xnew, ynew) ax2 = plt.subplot( 1 , 2 , 2 , projection = '3d' ) surf2 = ax2.plot_surface(xnew, ynew, fnew, rstride = 2 , cstride = 2 , cmap = cm.coolwarm, linewidth = 0.5 , antialiased = true) ax2.set_xlabel( 'xnew' ) ax2.set_ylabel( 'ynew' ) ax2.set_zlabel( 'fnew(x, y)' ) plt.colorbar(surf2, shrink = 0.5 , aspect = 5 ) # 标注 plt.show() |
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/momingqimiao71/article/details/78217109