脚本之家,脚本语言编程技术及教程分享平台!
分类导航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

香港云服务器
服务器之家 - 脚本之家 - Python - 通过Pandas读取大文件的实例

通过Pandas读取大文件的实例

2021-03-01 00:39痞靥 Python

今天小编就为大家分享一篇通过Pandas读取大文件的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

当数据文件过大时,由于计算机内存有限,需要对大文件进行分块读取:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
import pandas as pd
f = open('E:/学习相关/Python/数据样例/用户侧数据/test数据.csv')
reader = pd.read_csv(f, sep=',', iterator=True)
loop = True
chunkSize = 100000
chunks = []
while loop:
 try:
 chunk = reader.get_chunk(chunkSize)
 chunks.append(chunk)
 except StopIteration:
 loop = False
 print("Iteration is stopped.")
df = pd.concat(chunks, ignore_index=True)
print(df)

read_csv()函数的iterator参数等于True时,表示返回一个TextParser以便逐块读取文件;

chunkSize表示文件块的大小,用于迭代;

TextParser类的get_chunk方法用于读取任意大小的文件块;

StopIteration的异常表示在循环对象穷尽所有元素时报错;

concat()函数用于将数据做轴向连接:

?
1
pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None, levels=None, names=None, Verify_integrity=False)

常用参数:

objs:Series,DataFrame或者是Panel构成的序列list;

axis:需要合并连接的轴,0是行,1是列;

join:连接的参数,inner或outer;

ignore=True表示重建索引。

以上这篇通过Pandas读取大文件的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。

原文链接:https://blog.csdn.net/u012347642/article/details/78555132

延伸 · 阅读

精彩推荐
915