本文介绍了pytorch 把MNIST数据集转换成图片和txt的方法,分享给大家,具体如下:
1.下载Mnist 数据集
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|
import os # third-party library import torch import torch.nn as nn from torch.autograd import Variable import torch.utils.data as Data import torchvision import matplotlib.pyplot as plt # torch.manual_seed(1) # reproducible DOWNLOAD_MNIST = False # Mnist digits dataset if not (os.path.exists( './mnist/' )) or not os.listdir( './mnist/' ): # not mnist dir or mnist is empyt dir DOWNLOAD_MNIST = True train_data = torchvision.datasets.MNIST( root = './mnist/' , train = True , # this is training data transform = torchvision.transforms.ToTensor(), # Converts a PIL.Image or numpy.ndarray to # torch.FloatTensor of shape (C x H x W) and normalize in the range [0.0, 1.0] download = DOWNLOAD_MNIST, ) |
下载下来的其实可以直接用了,但是我们这边想把它们转换成图片和txt,这样好看些,为后面用自己的图片和txt作为准备
2. 保存为图片和txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
|
import os from skimage import io import torchvision.datasets.mnist as mnist import numpy root = "./mnist/raw/" train_set = ( mnist.read_image_file(os.path.join(root, 'train-images-idx3-ubyte' )), mnist.read_label_file(os.path.join(root, 'train-labels-idx1-ubyte' )) ) test_set = ( mnist.read_image_file(os.path.join(root, 't10k-images-idx3-ubyte' )), mnist.read_label_file(os.path.join(root, 't10k-labels-idx1-ubyte' )) ) print ( "train set:" , train_set[ 0 ].size()) print ( "test set:" , test_set[ 0 ].size()) def convert_to_img(train = True ): if (train): f = open (root + 'train.txt' , 'w' ) data_path = root + '/train/' if ( not os.path.exists(data_path)): os.makedirs(data_path) for i, (img, label) in enumerate ( zip (train_set[ 0 ], train_set[ 1 ])): img_path = data_path + str (i) + '.jpg' io.imsave(img_path, img.numpy()) int_label = str (label).replace( 'tensor(' , '') int_label = int_label.replace( ')' , '') f.write(img_path + ' ' + str (int_label) + '\n' ) f.close() else : f = open (root + 'test.txt' , 'w' ) data_path = root + '/test/' if ( not os.path.exists(data_path)): os.makedirs(data_path) for i, (img, label) in enumerate ( zip (test_set[ 0 ], test_set[ 1 ])): img_path = data_path + str (i) + '.jpg' io.imsave(img_path, img.numpy()) int_label = str (label).replace( 'tensor(' , '') int_label = int_label.replace( ')' , '') f.write(img_path + ' ' + str (int_label) + '\n' ) f.close() convert_to_img( True ) convert_to_img( False ) |
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:http://www.waitingfy.com/archives/3539