pandas有groupby分组函数和sort_values排序函数,但是如何对dataframe分组之后排序呢?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
In [70]: df = pd.DataFrame(((random.randint(2012, 2016), random.choice(['tech', 'art', 'office']), '%dk-%dk'%(random.randint(2,10), random.randint(10, 20)), '') for _ in xrange(10000)), columns=['publish_time', 'classf', 'salary', 'title']) In [71]: df.head() Out[71]: publish_time classf salary title 0 2012 art 2k-19k 1 2014 office 5k-17k 2 2013 office 2k-10k 3 2013 art 5k-14k 4 2013 art 2k-14k In [72]: df.groupby(['publish_time', 'classf', 'salary']).count()['title'].groupby(level=0, group_keys=False).nlargest(10) Out[72]: publish_time classf salary 2012 art 7k-13k 18 4k-13k 16 tech 3k-12k 14 art 6k-16k 13 8k-15k 13 office 5k-18k 13 tech 4k-14k 13 |
以上这篇pandas多级分组实现排序的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/qq_35318838/article/details/77051109