本文学习Neural Networks and Deep Learning 在线免费书籍,用python构建神经网络识别手写体的一个总结。
代码主要包括两三部分:
1)、数据调用和预处理
2)、神经网络类构建和方法建立
3)、代码测试文件
1)数据调用:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
|
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2017-03-12 15:11 # @Author : CC # @File : net_load_data.py # @Software: PyCharm Community Edition from numpy import * import numpy as np import cPickle def load_data(): """载入解压后的数据,并读取""" with open ( 'data/mnist_pkl/mnist.pkl' , 'rb' ) as f: try : train_data,validation_data,test_data = cPickle.load(f) print " the file open sucessfully" # print train_data[0].shape #(50000,784) # print train_data[1].shape #(50000,) return (train_data,validation_data,test_data) except EOFError: print 'the file open error' return None def data_transform(): """将数据转化为计算格式""" t_d,va_d,te_d = load_data() # print t_d[0].shape # (50000,784) # print te_d[0].shape # (10000,784) # print va_d[0].shape # (10000,784) # n1 = [np.reshape(x,784,1) for x in t_d[0]] # 将5万个数据分别逐个取出化成(784,1),逐个排列 n = [np.reshape(x, ( 784 , 1 )) for x in t_d[ 0 ]] # 将5万个数据分别逐个取出化成(784,1),逐个排列 # print 'n1',n1[0].shape # print 'n',n[0].shape m = [vectors(y) for y in t_d[ 1 ]] # 将5万标签(50000,1)化为(10,50000) train_data = zip (n,m) # 将数据与标签打包成元组形式 n = [np.reshape(x, ( 784 , 1 )) for x in va_d[ 0 ]] # 将5万个数据分别逐个取出化成(784,1),排列 validation_data = zip (n,va_d[ 1 ]) # 没有将标签数据矢量化 n = [np.reshape(x, ( 784 , 1 )) for x in te_d[ 0 ]] # 将5万个数据分别逐个取出化成(784,1),排列 test_data = zip (n, te_d[ 1 ]) # 没有将标签数据矢量化 # print train_data[0][0].shape #(784,) # print "len(train_data[0])",len(train_data[0]) #2 # print "len(train_data[100])",len(train_data[100]) #2 # print "len(train_data[0][0])", len(train_data[0][0]) #784 # print "train_data[0][0].shape", train_data[0][0].shape #(784,1) # print "len(train_data)", len(train_data) #50000 # print train_data[0][1].shape #(10,1) # print test_data[0][1] # 7 return (train_data,validation_data,test_data) def vectors(y): """赋予标签""" label = np.zeros(( 10 , 1 )) label[y] = 1.0 #浮点计算 return label |
2)网络构建
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
|
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2017-03-12 16:07 # @Author : CC # @File : net_network.py import numpy as np import random class Network( object ): #默认为基类?用于继承:print isinstance(network,object) def __init__( self ,sizes): self .num_layers = len (sizes) self .sizes = sizes # print 'num_layers', self.num_layers self .weight = [np.random.randn(a1, a2) for (a1, a2) in zip (sizes[ 1 :], sizes[: - 1 ])] #产生一个个数组 self .bias = [np.random.randn(a3, 1 ) for a3 in sizes[ 1 :]] # print self.weight[0].shape #(20,10) def SGD( self ,train_data,min_batch_size,epoches,eta,test_data = False ): """ 1) 打乱样本,将训练数据划分成小批次 2)计算出反向传播梯度 3) 获得权重更新""" if test_data: n_test = len (test_data) n = len (train_data) #50000 random.shuffle(train_data) # 打乱 min_batches = [train_data[k:k + min_batch_size] for k in xrange ( 0 ,n,min_batch_size)] #提取批次数据 for k in xrange ( 0 ,epoches): #利用更新后的权值继续更新 random.shuffle(train_data) # 打乱 for min_batch in min_batches: #逐个传入,效率很低 self .updata_parameter(min_batch,eta) if test_data: num = self .evaluate(test_data) print "the {0}th epoches: {1}/{2}" . format (k,num, len (test_data)) else : print 'epoches {0} completed' . format (k) def forward( self ,x): """获得各层激活值""" for w,b in zip ( self .weight, self .bias): x = sigmoid(np.dot(w, x) + b) return x def updata_parameter( self ,min_batch,eta): """1) 反向传播计算每个样本梯度值 2) 累加每个批次样本的梯度值 3) 权值更新""" ndeltab = [np.zeros(b.shape) for b in self .bias] ndeltaw = [np.zeros(w.shape) for w in self .weight] for x,y in min_batch: deltab,deltaw = self .backprop(x,y) ndeltab = [nb + db for nb,db in zip (ndeltab,deltab)] ndeltaw = [nw + dw for nw,dw in zip (ndeltaw,deltaw)] self .bias = [b - eta * ndb / len (min_batch) for ndb,b in zip (ndeltab, self .bias)] self .weight = [w - eta * ndw / len (min_batch) for ndw,w in zip (ndeltaw, self .weight)] def backprop( self ,x,y): """执行前向计算,再进行反向传播,返回deltaw,deltab""" # [w for w in self.weight] # print 'len',len(w) # print "self.weight",self.weight[0].shape # print w[0].shape # print w[1].shape # print w.shape activation = x activations = [x] zs = [] # feedforward for w, b in zip ( self .weight, self .bias): # print w.shape,activation.shape,b.shape z = np.dot(w, activation) + b zs.append(z) #用于计算f(z)导数 activation = sigmoid(z) # print 'activation',activation.shape activations.append(activation) # 每层的输出结果 delta = self .top_subtract(activations[ - 1 ],y) * dsigmoid(zs[ - 1 ]) #最后一层的delta,np.array乘,相同维度乘 deltaw = [np.zeros(w1.shape) for w1 in self .weight] #每一次将获得的值作为列表形式赋给deltaw deltab = [np.zeros(b1.shape) for b1 in self .bias] # print 'deltab[0]',deltab[-1].shape deltab[ - 1 ] = delta deltaw[ - 1 ] = np.dot(delta,activations[ - 2 ].transpose()) for k in xrange ( 2 , self .num_layers): delta = np.dot( self .weight[ - k + 1 ].transpose(),delta) * dsigmoid(zs[ - k]) deltab[ - k] = delta deltaw[ - k] = np.dot(delta,activations[ - k - 1 ].transpose()) return (deltab,deltaw) def evaluate( self ,test_data): """评估验证集和测试集的精度,标签直接一个数作为比较""" z = [(np.argmax( self .forward(x)),y) for x,y in test_data] zs = np. sum ( int (a = = b) for a,b in z) # zk = sum(int(a == b) for a,b in z) # print "zs/zk:",zs,zk return zs def top_subtract( self ,x,y): return (x - y) def sigmoid(x): return 1.0 / ( 1.0 + np.exp( - x)) def dsigmoid(x): z = sigmoid(x) return z * ( 1 - z) |
3)网络测试
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2017-03-12 15:24 # @Author : CC # @File : net_test.py import net_load_data # net_load_data.load_data() train_data,validation_data,test_data = net_load_data.data_transform() import net_network as net net1 = net.Network([ 784 , 30 , 10 ]) min_batch_size = 10 eta = 3.0 epoches = 30 net1.SGD(train_data,min_batch_size,epoches,eta,test_data) print "complete" |
4)结果
1
2
3
4
5
6
7
8
9
10
11
|
the 9th epoches: 9405 / 10000 the 10th epoches: 9420 / 10000 the 11th epoches: 9385 / 10000 the 12th epoches: 9404 / 10000 the 13th epoches: 9398 / 10000 the 14th epoches: 9406 / 10000 the 15th epoches: 9396 / 10000 the 16th epoches: 9413 / 10000 the 17th epoches: 9405 / 10000 the 18th epoches: 9425 / 10000 the 19th epoches: 9420 / 10000 |
总体来说这本书的实例,用来熟悉python和神经网络非常好。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:http://blog.csdn.net/Ychan_cc/article/details/61922132