本文记录一下TensorFLow的几种图片读取方法,官方文档有较为全面的介绍。
1.使用gfile读图片,decode输出是Tensor,eval后是ndarray
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
|
import matplotlib.pyplot as plt import tensorflow as tf import numpy as np print (tf.__version__) image_raw = tf.gfile.FastGFile( 'test/a.jpg' , 'rb' ).read() #bytes img = tf.image.decode_jpeg(image_raw) #Tensor #img2 = tf.image.convert_image_dtype(img, dtype = tf.uint8) with tf.Session() as sess: print ( type (image_raw)) # bytes print ( type (img)) # Tensor #print(type(img2)) print ( type (img. eval ())) # ndarray !!! print (img. eval ().shape) print (img. eval ().dtype) # print(type(img2.eval())) # print(img2.eval().shape) # print(img2.eval().dtype) plt.figure( 1 ) plt.imshow(img. eval ()) plt.show() |
输出为:
1.3.0
<class 'bytes'>
<class 'tensorflow.python.framework.ops.Tensor'>
<class 'numpy.ndarray'>
(666, 1000, 3)
uint8
图片显示(略)
2.使用WholeFileReader输入queue,decode输出是Tensor,eval后是ndarray
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
|
import tensorflow as tf import os import matplotlib.pyplot as plt for root, dirs, files in os.walk(file_dir): #模块os中的walk()函数遍历文件夹下所有的文件 print (root) #当前目录路径 print (dirs) #当前路径下所有子目录 print (files) #当前路径下所有非目录子文件 def file_name2(file_dir): #特定类型的文件 L = [] for root, dirs, files in os.walk(file_dir): for file in files: if os.path.splitext( file )[ 1 ] = = '.jpg' : L.append(os.path.join(root, file )) return L path = file_name2( 'test' ) #以下参考http://www.zzvips.com/article/131265.html (十图详解TensorFlow数据读取机制) #path2 = tf.train.match_filenames_once(path) file_queue = tf.train.string_input_producer(path, shuffle = True , num_epochs = 2 ) #创建输入队列 image_reader = tf.WholeFileReader() key, image = image_reader.read(file_queue) image = tf.image.decode_jpeg(image) with tf.Session() as sess: # coord = tf.train.Coordinator() #协同启动的线程 # threads = tf.train.start_queue_runners(sess=sess, coord=coord) #启动线程运行队列 # coord.request_stop() #停止所有的线程 # coord.join(threads) tf.local_variables_initializer().run() threads = tf.train.start_queue_runners(sess = sess) #print (type(image)) #print (type(image.eval())) #print(image.eval().shape) for _ in path + path: plt.figure plt.imshow(image. eval ()) plt.show() |
3.使用read_file,decode输出是Tensor,eval后是ndarray
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
|
import matplotlib.pyplot as plt import tensorflow as tf import numpy as np print (tf.__version__) image_value = tf.read_file( 'test/a.jpg' ) img = tf.image.decode_jpeg(image_value, channels = 3 ) with tf.Session() as sess: print ( type (image_value)) # bytes print ( type (img)) # Tensor #print(type(img2)) print ( type (img. eval ())) # ndarray !!! print (img. eval ().shape) print (img. eval ().dtype) # print(type(img2.eval())) # print(img2.eval().shape) # print(img2.eval().dtype) plt.figure( 1 ) plt.imshow(img. eval ()) plt.show() |
输出是:
1.3.0
<class 'tensorflow.python.framework.ops.Tensor'>
<class 'tensorflow.python.framework.ops.Tensor'>
<class 'numpy.ndarray'>
(666, 1000, 3)
uint8
显示图片(略)
4.TFRecords:
有空再看。
如果图片是根据分类放在不同的文件夹下,那么可以直接使用如下代码:
http://www.zzvips.com/article/131256.html
http://www.zzvips.com/article/131260.html
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:http://blog.csdn.net/wayne2019/article/details/77884478