遇到有接口需要使用国密的SM2算法,对方使用的是JAVA,我们使用的是go,原以为都是标准算法不会有什么大问题,结果巨坑无法..
对方使用的加密模块,SM2.java和SM2KeyPairs.java,不知道最初是谁开发的,网上貌似很多都是这个版本的实现,但是和go的交互总是有问题,用这个java模块加密的,go里面怎么也无法正确解密。仔细核对之后发现,这个java模块有几个地方并不符合GB/T32891的标准。
SM2加密的流程
SM2使用的椭圆曲线基点记为G,私钥为整数d, 公钥为P = dG.,这里K、G为椭圆曲线上的点,d为正整数
选择随机整数k,计算 C1 = kG, C4 = kP
以点C4的X/Y两坐标为参数,计算一组字节流T,与明文进行异或运算,结果为C2
已C1和明文组合,用SM3算法计算哈希值C3
将C1、C2、C3组合为加密后的密文
这里只要得到C4,便能进行解密,而C4 = kP = kdP = dkP = d(kC) = dC1。而C1是密文的一部分,所以有了私钥d便可以进行解密。
这里的P、G、C1、C4是椭圆曲线上的点,点的乘法只具有几何意义上,并非2X3=6的算术运算。
SM2 java模块与标准差异
1. 加密密文的组合
加密后的密文,标准为C1 || C3 || C2,C3位SM3哈系值,而这个库中结果为 C1 || C2 || C3。
2. Java BigInteger的最高位为1时编码错误
Java中,BigInteger的最高位为1时,toByteArray()得到的字节数组会多一位,在前面多了一个为0的字节,应该是要表示为正数。导致运算结果和其他语言的不一致。
3. 计算T时的差异
计算T时,需要用点C4的X坐标和Y坐标组合进行,这个库里直接调用bouncycastle库里,ECPoint类的getEncoded()的方法,得到的结果是在字节流里加了一个字节(0x4),实际是不需要的,导致计算的字节流T有差异
4. 取点的X/Y坐标时没有正则化
java的bouncycastle库里,在椭圆曲线的计算中,使用了X/Y/Z三个坐标,而其他的实现可能是没有Z坐标的,所以调用点的坐标的时候,应该调用normalize()方法正则化后使用,这时Z坐标是1。
而在这个库中,并没有进行正则化的操作,导致加密结果无法与其他程序进行交互,除非对方也使用的bouncycastle库,可实现方式与其类似。
补充知识:SM2数字签名算法java实现
给出我的SM2数字签名算法代码Java实现,所属文件SM2Signer.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
|
@Override public BigInteger[] generateSignature( byte [] message) { ECDomainParameters ec = key.getParameters(); BigInteger n = ec.getN(); //阶n ECPoint G = ec.getG(); //基点G BigInteger r, s; // 获取私钥d BigInteger d = ((ECPrivateKeyParameters)key).getD(); ECMultiplier basePointMultiplier = createBasePointMultiplier(); // 初始化随机数生成器 if (kCalculator.isDeterministic()) { kCalculator.init(n, d, message); } else { kCalculator.init(n, random); } do { // 计算s BigInteger k; BigInteger e; BigInteger tmp; BigInteger tmp2; do { // 计算r,参照GM/T 0003.2-2012 6.1 k = kCalculator.nextK(); ECPoint p = basePointMultiplier.multiply(G, k).normalize(); e = org.bouncycastle.util.BigIntegers.fromUnsignedByteArray(message); // r = (e + x) mod n r = p.getAffineXCoord().toBigInteger().add(e).mod(n); } while (r.equals(ZERO) || r.add(k).equals(n)); // tmp = (1+d).inverse tmp = d.add(ONE).modInverse(n); // tmp2 = k - r*d tmp2 = k.subtract(r.multiply(d)); s = tmp.multiply(tmp2).mod(n); } while (s.equals(ZERO)); return new BigInteger[] {r,s}; } |
以上这篇解决对接JAVA SM2加密遇到的坑就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://my.oschina.net/u/2539854/blog/3094186