脚本之家,脚本语言编程技术及教程分享平台!
分类导航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服务器之家 - 脚本之家 - Python - Python 正则表达式入门(初级篇)

Python 正则表达式入门(初级篇)

2020-09-14 10:17唯心不易 Python

本文主要为没有使用正则表达式经验的新手入门所写。由浅入深介绍了Python 正则表达式,有需要的朋友可以看下

引子

首先说 正则表达式是什么?

正则表达式,又称正规表示式、正规表示法、正规表达式、规则表达式、常规表示法(英语:Regular Expression,在代码中常简写为regex、regexp或RE),计算机科学的一个概念。正则表达式使用单个字符串来描述、匹配一系列匹配某个句法规则的字符串。在很多文本编辑器里,正则表达式通常被用来检索、替换那些匹配某个模式的文本。

许多程序设计语言都支持利用正则表达式进行字符串操作。例如,在Perl中就内建了一个功能强大的正则表达式引擎。正则表达式这个概念最初是由Unix中的工具软件(例如sed和grep)普及开的。正则表达式通常缩写成“regex”,单数有regexp、regex,复数有regexps、regexes、regexen。

引用自百科https://zh.wikipedia.org/wiki/%E6%AD%A3%E5%88%99%E8%A1%A8%E8%BE%BE%E5%BC%8F

定义是定义,太正经了就没法用了。我们来举个栗子:假如你在写一个爬虫,你得到了

一个网页的HTML源码。其中有一段

<html><body><h1>hello world<h1></body></html>

你想要把这个hello world提取出来,但你这时如果只会python 的字符串处理,那么第一反应可能是

?
1
2
s = <html><body><h1>hello world<h1></body></html>
start_index = s.find('<h1>')

然后从这个位置向下查找到下一个<h1>出现这样做未尝不可,但是很麻烦不是吗。需要考虑多个标签,一不留神就多匹配到东西了,而如果想要非常准确的匹配到,又得多加循环判断,效率太低。

这时候,正则表达式就是首选的帮手。

干货开始

入门级别

接着说我们刚才那个例子。我们如果拿正则处理这个表达式要怎么做呢?

?
1
2
3
4
5
6
import re
key = r"<html><body><h1>hello world<h1></body></html>"#这段是你要匹配的文本
p1 = r"(?<=<h1>).+?(?=<h1>)"#这是我们写的正则表达式规则,你现在可以不理解啥意思
pattern1 = re.compile(p1)#我们在编译这段正则表达式
matcher1 = re.search(pattern1,key)#在源文本中搜索符合正则表达式的部分
print matcher1.group(0)#打印出来

你可以尝试运行上面的代码,看看是不是和我们想象的一样(博主是在python2.7环境下)发现代码挺少挺简单?往下看。而且正则表达式实际上要比看起来的那种奇形怪状要简单得多。

首先,从最基础的正则表达式说起。

假设我们的想法是把一个字符串中的所有"python"给匹配到。我们试一试怎么做

?
1
2
3
4
5
6
import re
key = r"javapythonhtmlvhdl"#这是源文本
p1 = r"python"#这是我们写的正则表达式
pattern1 = re.compile(p1)#同样是编译
matcher1 = re.search(pattern1,key)#同样是查询
print matcher1.group(0)

看完这段代码,你是不是觉得:卧槽?这就是正则表达式?直接写上去就行?

确实,正则表达式并不像它表面上那么奇葩,如果不是我们故意改变一些符号的含义时,你看到的就是想要匹配的。

所以,先把大脑清空,先认为正则表达式就是和想要匹配的字符串长得一样。在之后的练习中我们会逐步进化

初级

0.无论是python还是正则表达式都是区分大小写的,所以当你在上面那个例子上把"python"换成了"Python",那就匹配不到你心爱的python了。

1.重新回到第一个例子中那个<h1>hello world<h1>匹配。假如我像这么写,会怎么样?

?
1
2
3
4
5
import re
key = r"<h1>hello world<h1>"#源文本
p1 = r"<h1>.+<h1>"#我们写的正则表达式,下面会将为什么
pattern1 = re.compile(p1)
print pattern1.findall(key)#发没发现,我怎么写成findall了?咋变了呢?

有了入门级的经验,我们知道那两个<h1>就是普普通通的字符,但是中间的是什么鬼?

.字符在正则表达式代表着可以代表任何一个字符(包括它本身)

findall返回的是所有符合要求的元素列表,包括仅有一个元素时,它还是给你返回的列表。

机智如你可能会突然问:那我如果就只是想匹配"."呢?结果啥都给我返回了咋整?在正则表达式中有一个字符\,其实如果你编程经验较多的话,你就会发现这是好多地方的“转义符”。在正则表达式里,这个符号通常用来把特殊的符号转成普通的,把普通的转成特殊的23333(并不是特殊的“2333”,写完才发现会不会有脑洞大的想歪了)。

举个栗子,你真的想匹配"chuxiuhong@hit.edu.cn"这个邮箱(我的邮箱),你可以把正则表达式写成下面这个样子:

?
1
2
3
4
5
import re
key = r"afiouwehrfuichuxiuhong@hit.edu.cnaskdjhfiosueh"
p1 = r"chuxiuhong@hit\.edu\.cn"
pattern1 = re.compile(p1)
print pattern1.findall(key)

发现了吧,我们在.的前面加上了转义符\,但是并不是代表匹配“\.”的意思,而是只匹配“.”的意思!
不知道你细不细心,有没有发现我们第一次用.时,后面还跟了一个+?那这个加号是干什么的呢?
其实不难想,我们说了“.字符在正则表达式代表着可以代表任何一个字符(包括它本身)”,但是"hello world"可不是一个字符啊。
+的作用是将前面一个字符或一个子表达式重复一遍或者多遍。
比方说表达式“ab+”那么它能匹配到“abbbbb”,但是不能匹配到"a",它要求你必须得有个b,多了不限,少了不行。你如果问我有没有那种“有没有都行,有多少都行的表达方式”,回答是有的。
*跟在其他符号后面表达可以匹配到它0次或多次
比方说我们在王叶内遇到了链接,可能既有http://开头的,又有https://开头的,我们怎么处理?

?
1
2
3
4
5
import re
key = r"http://www.nsfbuhwe.com and https://www.auhfisna.com"#胡编乱造的网址,别在意
p1 = r"https*://"#看那个星号!
pattern1 = re.compile(p1)
print pattern1.findall(key)

输出

['http://', 'https://']

2.比方说我们有这么一个字符串"cat hat mat qat",你会发现前面三个是实际的单词,最后那个是我胡编乱造的(上百度查完是昆士兰英语学院的缩写= =)。如果你本来就知道"at"前面是c、h、m其中之一时这才构成单词,你想把这样的匹配出来。根据已经学到的知识是不是会想到写出来三个正则表达式进行匹配?实际上不需要。因为有一种多字符匹方式

[]代表匹配里面的字符中的任意一个

还是举个栗子,我们发现啊,有的程序员比较过分,,在<html></html>这对标签上,大小写混用,老害得我们抓不到想要的东西,我们该怎么应对?是写16*16种正则表达式挨个匹配?no

?
1
2
3
4
5
import re
key = r"lalala<hTml>hello</Html>heiheihei"
p1 = r"<[Hh][Tt][Mm][Ll]>.+?</[Hh][Tt][Mm][Ll]>"
pattern1 = re.compile(p1)
print pattern1.findall(key)

输出

['<hTml>hello</Html>']

我们既然有了范围性的匹配,自然有范围性的排除。

[^]代表除了内部包含的字符以外都能匹配

还是cat,hat,mat,qat这个例子,我们想匹配除了qat以外的,那么就应该这么写:

?
1
2
3
4
5
import re
key = r"mat cat hat pat"
p1 = r"[^p]at"#这代表除了p以外都匹配
pattern1 = re.compile(p1)
print pattern1.findall(key)

输出

为了方便我们写简洁的正则表达式,它本身还提供下面这样的写法

 

正则表达式 代表的匹配字符
[0-9] 0123456789任意之一
[a-z] 小写字母任意之一
[A-Z] 大写字母任意之一
\d 等同于[0-9]
\D 等同于[^0-9]匹配非数字
\w 等同于[a-z0-9A-Z_]匹配大小写字母、数字和下划线
\W 等同于[^a-z0-9A-Z_]等同于上一条取非

 

3.介绍到这里,我们可能已经掌握了大致的正则表达式的构造方式,但是我们常常会在实战中遇到一些匹配的不准确的问题。比方说:

?
1
2
3
4
5
import re
key = r"chuxiuhong@hit.edu.cn"
p1 = r"@.+\."#我想匹配到@后面一直到“.”之间的,在这里是hit
pattern1 = re.compile(p1)
print pattern1.findall(key)

输出结果

['@hit.edu.']

呦呵!你咋能多了呢?我理想的结果是@hit.,你咋还给我加量了呢?这是因为正则表达式默认是“贪婪”的,我们之前讲过,“+”代表是字符重复一次或多次。但是我们没有细说这个多次到底是多少次。所以它会尽可能“贪婪”地多给我们匹配字符,在这个例子里也就是匹配到最后一个“.”。

我们怎么解决这种问题呢?只要在“+”后面加一个“?”就好了。

?
1
2
3
4
5
import re
key = r"chuxiuhong@hit.edu.cn"
p1 = r"@.+?\."#我想匹配到@后面一直到“.”之间的,在这里是hit
pattern1 = re.compile(p1)
print pattern1.findall(key)

输出结果

['@hit.']

加了一个“?”我们就将贪婪的“+”改成了懒惰的“+”。这对于[abc]+,\w*之类的同样适用。

小测验:上面那个例子可以不使用懒惰匹配,想一种方法得到同样的结果

**个人建议:在你使用"+","*"的时候,一定先想好到底是用贪婪型还是懒惰型,尤其是当你用到范围较大的项目上时,因为很有可能它就多匹配字符回来给你!!!**

为了能够准确的控制重复次数,正则表达式还提供

{a,b}(代表a<=匹配次数<=b)

还是举个栗子,我们有sas,saas,saaas,我们想要sas和saas,我们怎么处理呢?

?
1
2
3
4
5
import re
key = r"saas and sas and saaas"
p1 = r"sa{1,2}s"
pattern1 = re.compile(p1)
print pattern1.findall(key)

输出

['saas', 'sas']

如果你省略掉{1,2}中的2,那么就代表至少匹配一次,那么就等价于?

如果你省略掉{1,2}中的1,那么就代表至多匹配2次。

下面列举一些正则表达式里的元字符及其作用

 

元字符 说明
. 代表任意字符
\  
[ ] 匹配内部的任一字符或子表达式
[^] 对字符集和取非
- 定义一个区间
\ 对下一字符取非(通常是普通变特殊,特殊变普通)
* 匹配前面的字符或者子表达式0次或多次
*? 惰性匹配上一个
+ 匹配前一个字符或子表达式一次或多次
+? 惰性匹配上一个
? 匹配前一个字符或子表达式0次或1次重复
{n} 匹配前一个字符或子表达式
{m,n} 匹配前一个字符或子表达式至少m次至多n次
{n,} 匹配前一个字符或者子表达式至少n次
{n,}? 前一个的惰性匹配
^ 匹配字符串的开头
\A 匹配字符串开头
$ 匹配字符串结束
[\b] 退格字符
\c 匹配一个控制字符
\d 匹配任意数字
\D 匹配数字以外的字符
\t 匹配制表符
\w 匹配任意数字字母下划线
\W 不匹配数字字母下划线

 

以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流,同时也希望多多支持服务器之家!

原文链接:http://www.cnblogs.com/chuxiuhong/p/5885073.html

延伸 · 阅读

精彩推荐