服务器之家:专注于服务器技术及软件下载分享
分类导航

服务器资讯|IT/互联网|云计算|区块链|软件资讯|操作系统|手机数码|百科知识|免费资源|头条新闻|

服务器之家 - 新闻资讯 - 云计算 - K8s CPU Limits 造成的事故,竟让 Prometheus 轻松解决了?

K8s CPU Limits 造成的事故,竟让 Prometheus 轻松解决了?

2023-06-21 12:00未知服务器之家 云计算

本文将介绍 Kubernetes 的 resource limits 是如何工作的、使用哪些 metrics 来设置正确的 limits 值、以及使用哪些指标来定位 CPU 抑制的问题。 将 limits 中的 CPU 解释为时间概念,可以方便地理解容器中的多线程是如何使用 CPU 时间的。 一

本文将介绍 Kubernetes 的 resource limits 是如何工作的、使用哪些 metrics 来设置正确的 limits 值、以及使用哪些指标来定位 CPU 抑制的问题。

将 limits 中的 CPU 解释为时间概念,可以方便地理解容器中的多线程是如何使用 CPU 时间的。

一、理解 Limits

在配置 limits 时,我们会告诉 Linux 节点在一个特定的周期内一个容器应用的运行时长。这样做是为了保护节点上的其余负载不受任意一组进程占用过多 CPU 周期的影响。
limits 的核并不是主板上的物理核,而是配置了单个容器内的一组进程或线程在容器短暂暂停 (避免影响到其他应用) 前的运行时长。这句话有点违反直觉,特别是在 Kubernetes 调度器级别上很容易出错,Kubernetes 调度器使用了物理核的概念。

kubernetes 调度器在执行调度的时候用的是节点上物理核的概念,但容器运行的时候,应该将 limits 配置的 CPU 转换为 CPU 时间的概念。

二、Limits 其实是时间

下面使用一个虚构的例子来解释这个概念。假设有一个单线程应用,该应用需要 1 秒 CPU 运行时间来完成一个事务,此时将 limits 配置为 1 core 或 1000 millicores:
    Resources:limits:cpu:1000m

    如果该应用需要完整的 1 秒 CPU 运行时间来服务一个 API 调用,中间不能被停止或抑制,即在容器被抑制前需要允许该应用运行 1000 毫秒 (ms) 或 1 CPU 秒。

    K8s CPU Limits 造成的事故,竟让 Prometheus 轻松解决了?

    由于 1000 毫秒等同于 1 秒 CPU 运行时间,这就可以让该应用每秒不受限地运行一个完整的 CPU 秒,实际的工作方式更加微妙。我们将一个 CPU 秒称为一个周期 (period),用来衡量时间块。

    三、Linux Accounting system

    Limits 是一个记账系统 (Accounting system),用于跟踪和限制一个容器在固定时间周期内使用的总 vCPU 数,该值作为可用运行时的全局池进行跟踪,一个容器可以在该周期内使用该池。上面陈述中有很多内容,下面对此进行分析。
    回到周期或记账系统翻页频率的概念。我们需要跨多个 vCPU 申请运行时间,这意味着需要将账簿的每页分为多个段,称为切片。Linux 内核默认会将一个周期分为 20 个切片。

    K8s CPU Limits 造成的事故,竟让 Prometheus 轻松解决了?

    假设我们需要运行半个周期,此时只需要将配额配置为一半数目的切片即可,在一个周期之后,记账系统会重置切片,并重启进程。

    K8s CPU Limits 造成的事故,竟让 Prometheus 轻松解决了?

    类似于 requests 或 shares 可以转换为表示 CPU 分配百分比的比率,也可以将 limits 转换为一个百分比。例如,容器的配额设置为半个周期,则配置为:

    resources:limits:cpu:500m

    开始时,使用 1000 milliCPU 作为一个完整的 share。当配置 500 milliCPU 时,使用了半个周期,或 500m/1000m = 50%。如果设置了 200m/1000m,则表示使用的 CPU 比率为 20%,以此类推。我们需要这些转换数字来理解一些 prometheus 的指标输出。
    上面提到的记账系统是按容器计算的,下面看下指标 container_spec_cpu_period ,与我们假设的实验不同,实际与容器相关的周期为 100ms。

    K8s CPU Limits 造成的事故,竟让 Prometheus 轻松解决了?

    Linux 有一个配置,称为 cpu.cfs_period_us ,设置了账簿翻到下一页前的时间,该值表示下一个周期创建前的微秒时间。这些 Linux 指标会通过 cAdvisor 转换为 prometheus 指标。
    撇开一些特殊场景不谈,在账簿翻页之前经过的时间并不像被限制的 CPU 时间切片那样重要。
    下面看下使用 cpu.cfs_quota_us 指标设置的容器配额,这里配置为 50 毫秒,即 100ms 的一半:

    K8s CPU Limits 造成的事故,竟让 Prometheus 轻松解决了?

    四、多线程容器

    容器通常具有多个处理线程,根据语言的不同,可能有数百个线程。

    K8s CPU Limits 造成的事故,竟让 Prometheus 轻松解决了?

    当这些线程 / 进程运行时,它们会调度不同的 (可用)vCPU,Linux 的记账系统需要全局跟踪谁在使用这些 vCPU,以及需要将哪些内容添加到账簿中。

    先不谈周期的概念,下面我们使用 container_cpu_usage_seconds_total 来跟踪一个应用的线程在 1 秒内使用的 vCPU 数。假设线程在 4 个 vCPU 上均运行了整整一秒钟,则说明其使用了 4 个 vCPU 秒。

    如果总的 vCPU 时间小于 1 个 vCPU 秒会发生什么呢?此时会在该时间帧内抑制节点上该应用的其他线程的运行。

    五、Global accounting

    上面讨论了如何将一个 vCPU 秒切分为多个片,然后就可以全局地在多个 vCPU 上申请时间片。让我们回到上述例子 (4 个线程运行在 4 个 vCPU 上),进一步理解它们如何运行的。
    当一个 CPU 需要运行其队列中的一个线程或进程时,它首先会确认容器的全局配额中是否有 5ms 的时间片,如果全局配额中有足够的时间片,则会启动线程,否则,该线程会被抑制并等待下一个周期。

    K8s CPU Limits 造成的事故,竟让 Prometheus 轻松解决了?

    六、真实场景

    下面假设一个实验,假如有 4 个线程,每个线程需要 100ms 的 CPU 时间来完成一个任务,将所有所需的 vCPU 时间加起来,总计需要 400ms 或 4000m,因此可以以此为进程配置 limit 来避免被抑制。

    K8s CPU Limits 造成的事故,竟让 Prometheus 轻松解决了?

    不幸的是,实际的负载并不是这样的。这些函数的线程可能运行重的或轻的 API 调用。应用所需的 CPU 时间是变化的,因此不能将其认为是一个固定的值。再进一步,4 个线程可能并不会同时各需要一个 vCPU,有可能某些线程需要等待数据库锁或其他条件就绪。
    正因为如此,负载往往会突然爆发,因此延迟并不总是能够成为设置 limits 的候选因素。最新的一个特性—cpu.cfs_burst_us[1]允许将部分未使用的配额由一个周期转至下一个周期。
    有趣的是,这并不是让大多数客户陷入麻烦的地方。假设我们只是猜测了应用程序和测试需求,并且 1 个 CPU 秒听起来差不多是正确的。该容器的应用程序线程将分布到 4 个 vCPU 上。这样做的结果是将每个线程的全局配额分为 100ms/4 或 25ms 的运行时。

    K8s CPU Limits 造成的事故,竟让 Prometheus 轻松解决了?

    而实际的总配额为 (100ms 的配额) * (4 个线程) 或 400ms 的配额。在 100 毫秒的现实时间里,所有线程有 300 毫秒处于空闲状态。因此,这些线程总共被抑制了 300 毫秒。

    Latency

    下面从应用的角度看下这些影响。单线程应用需要 100ms 来完成一个任务,当设置的配额为 100ms 或 1000 m/1000 m = 100%,此时设置了一个合理的 limits,且没有抑制。

    K8s CPU Limits 造成的事故,竟让 Prometheus 轻松解决了?

    在第二个例子中,我们猜测错误,并将 limits 设置为 400m 或 400 m/1000 m = 40%,此时的配额为 100ms 周期中的 40ms。下图展示该配置了对该应用的延迟:

    K8s CPU Limits 造成的事故,竟让 Prometheus 轻松解决了?

    此时处理相同请求的时间翻倍 (220ms)。该应用在三个统计周期中的两个周期内受到了抑制。在这两个周期中,应用被抑制了 60ms。更重要的是,如果没有其他需要处理的线程,vCPU 将会被浪费,这不仅仅会降低应用的处理速度,也会降低 CPU 的利用率。
    与 limits 相关的最常见的指标 container_cpu_cfs_throttled_periods_total 展示了被抑制的周期, container_cpu_cfs_periods_total 则给出了总的可用周期。上例中,三分之二 (66%) 的周期被抑制了。
    那么,如何知道 limits 应该增加多少呢?

    七、Throttled seconds

    幸运的是,cAdvisor 提供了一个指标 container_cpu_cfs_throttled_seconds_total ,它会累加所有被抑制的 5ms 时间片,并让我们知道该进程超出配额的数量。指标的单位是秒,因此可以通过将该值除以 10 来获得 100ms(即我们设置的周期)。
    通过如下表达式可以找出 CPU 使用超过 100ms 的前三个 pods。

    topk(3,maxby(pod,container)(rate(container_cpu_usage_seconds_total{image!="",instance="$instance"}[$__rate_interval])))/10

    下面做一个实验:使用 sysbench 启动一个现实时间 100ms 中需要 400ms CPU 时间的的 4 线程应用。

    command:-sysbench-cpu---threads=4---time=0-run

    可以观测到使用了 400ms 的 vCPU:

    K8s CPU Limits 造成的事故,竟让 Prometheus 轻松解决了?

    下面对该容器添加 limits 限制:

    resources:limits:cpu:2000mmemory:128Mi

    可以看到总的 CPU 使用在 100ms 的现实时间中减少了一半,这正是我们所期望的。

    K8s CPU Limits 造成的事故,竟让 Prometheus 轻松解决了?

    PromQL 给出了每秒的抑制情况,每秒有 10 个周期 (每个周期默认 100ms)。为了得到每个周期的抑制情况,需要除以 10。如果需要知道应该增加多少 limits,则可以乘以 10(如 200ms * 10 = 2000m)。

    topk(3,maxby(pod,container)(rate(container_cpu_cfs_throttled_seconds_total{image!="",instance="$instance"}[$__rate_interval])))/10

    八、告警设置

    可以基于 CPU 抑制时间或抑制比率来编写告警表达式,其表达的也是 CPU 的饱和度信息:

    #CPU抑制时间超过1s时产生告警rate(container_cpu_cfs_throttled_seconds_total{namespace=~"wordpress-.*"}[1m])>1#CPU抑制周期占可用周期的一半时产生告警sum(increase(container_cpu_cfs_throttled_periods_total{container!=""}[5m]))by(container,pod,namespace)/sum(increase(container_cpu_cfs_periods_total{}[5m]))by(container,pod,namespace)*100>50

    九、总结

    本文介绍了 limits 是如何工作的,以及可以使用哪些指标来设置正确的值,使用哪些指标来进行抑制类型的问题定位。

    本文的实验提出了一个观点,即过多地配置 limits 的 vCPU 数也可能会导致 vCPU 处于 idle 状态而造成应用响应延迟,但在现实的服务中,一般会包含语言自身 runtime 的线程 (如 go 和 java) 以及开发者自己启动的线程,一般设置较多的 vCPU 不会对应用的响应造成影响,但会造成资源浪费。


    来源: https://www.cnblogs.com/charlieroro/p/17074808.html


    延伸 · 阅读

    精彩推荐