脚本之家,脚本语言编程技术及教程分享平台!
分类导航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服务器之家 - 脚本之家 - Python - Python连接MySQL并使用fetchall()方法过滤特殊字符

Python连接MySQL并使用fetchall()方法过滤特殊字符

2020-08-16 12:11Jacman Python

这篇文章主要介绍了Python连接MySQL的方法并讲解了如何使用fetchall()方法过滤特殊字符,示例环境为Ubuntu操作系统,需要的朋友可以参考下

来一个简单的例子,看Python如何操作数据库,相比Java的JDBC来说,确实非常简单,省去了很多复杂的重复工作,只关心数据的获取与操作。
准备工作
需要有相应的环境和模块:

  • Ubuntu 14.04 64bit
  • Python 2.7.6
  • MySQLdb

注意:Ubuntu 自带安装了Python,但是要使用Python连接数据库,还需要安装MySQLdb模块,安装方法也很简单:

?
1
sudo apt-get install MySQLdb

然后进入Python环境,import这个包,如果没有报错,则安装成功了:

?
1
2
3
4
5
6
python
Python 2.7.6 (default, Jun 22 2015, 17:58:13)
[GCC 4.8.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import MySQLdb
>>>

Python标准的数据库接口的Python DB-API(包括Python操作MySQL)。大多数Python数据库接口坚持这个标准。不同的数据库也就需要不同额模块,由于我本机装的是MySQL,所以使用了MySQLdb模块,对不同的数据库而言,只需要更改底层实现了接口的模块,代码不需要改,这就是模块的作用。
Python数据库操作
首先我们需要一个测试表
建表语句:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
CREATE DATABASE study;
use study;
DROP TABLE IF EXISTS python_demo;
CREATE TABLE python_demo (
 id int NOT NULL AUTO_INCREMENT COMMENT '主键,自增',
 user_no int NOT NULL COMMENT '用户编号',
 user_name VARBINARY(50) NOT NULL COMMENT '用户名',
 password VARBINARY(50) NOT NULL COMMENT '用户密码',
 remark VARBINARY(255) NOT NULL COMMENT '用户备注',
 PRIMARY KEY (id,user_no)
)ENGINE =innodb DEFAULT CHARSET = utf8 COMMENT '用户测试表';
 
INSERT INTO python_demo(user_no, user_name, password, remark) VALUES
 (1001,'张三01','admin','我是张三');
INSERT INTO python_demo(user_no, user_name, password, remark) VALUES
 (1002,'张三02','admin','我是张三');
INSERT INTO python_demo(user_no, user_name, password, remark) VALUES
 (1003,'张三03','admin','我是张三');
INSERT INTO python_demo(user_no, user_name, password, remark) VALUES
 (1004,'张三04','admin','我是张三');
INSERT INTO python_demo(user_no, user_name, password, remark) VALUES
 (1005,'张三05','admin','我是张三');
INSERT INTO python_demo(user_no, user_name, password, remark) VALUES
 (1006,'张三06','admin','我是张三');
INSERT INTO python_demo(user_no, user_name, password, remark) VALUES
 (1007,'张三07','admin','我是张三');
INSERT INTO python_demo(user_no, user_name, password, remark) VALUES
 (1008,'张三08','admin','我是张三');

Python代码

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# --coding=utf8--
import ConfigParser
 
import sys
import MySQLdb
 
def init_db():
  try:
    conn = MySQLdb.connect(host=conf.get('Database', 'host'),
                user=conf.get('Database', 'user'),
                passwd=conf.get('Database', 'passwd'),
                db=conf.get('Database', 'db'),
                charset='utf8')
    return conn
  except:
    print "Error:数据库连接错误"
    return None
 
def select_demo(conn, sql):
  try:
    cursor = conn.cursor()
    cursor.execute(sql)
    return cursor.fetchall()
  except:
    print "Error:数据库连接错误"
    return None
 
def update_demo():
  pass
 
def delete_demo():
  pass
 
def insert_demo():
  pass
 
if __name__ == '__main__':
  conf = ConfigParser.ConfigParser()
  conf.read('mysql.conf')
  conn = init_db()
  sql = "select * from %s" % conf.get('Database', 'table')
  data = select_demo(conn, sql)
  pass

fetchall()字段特殊字符过滤处理
最近在做数据仓库的迁移工作,之前数据仓库的数据都是用的shell脚本来抽取,后来换了python脚本.
但是在把数据抽取存放到hadoop时,出现了一个问题:
由于数据库字段很多,提前也不知道数据库字段会存储什么内容,hive建表是以\t\n做分隔,这就导致了一个问题,如果mysql字段内容里面本身含有\t\n,那么就会出现字段错位情况,并且很头疼的是mysql有100多个字段,也不知道哪个字段会出现这个问题.
shell脚本里的做法是在需要抽取的字段上用mysql的replace函数对字段进行替换,例如,假设mysql里的字段是column1 varchar(2000),那么很可能就会出现有特殊字符的情况,在查询的sql语句里加上

?
1
select replace(replace(replace(column1,'\r',''),'\n',''),'\t','')

之前一直是这么干的,但是这样写sql特别长,特别是有100多个字段,也不知道哪个有特殊字符,只要都加上.
所以在python中对字段不加处理,最终导致hive表字段对应出现偏差,所以在python里从mysql查询到的字段在写到文件之前需要对每个字段进行过滤处理
看个例子,我就以mysql测试为例,首先建一张测试表

?
1
2
3
4
5
6
7
8
CREATE TABLE `filter_fields` (
 `field1` varchar(50) DEFAULT NULL,
 `field2` varchar(50) DEFAULT NULL,
 `field3` varchar(50) DEFAULT NULL,
 `field4` varchar(50) DEFAULT NULL,
 `field5` varchar(50) DEFAULT NULL,
 `field6` varchar(50) DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

有六个字段,都是varchar类型,插入新数据可以在里面插入特殊字符.简单插入条数据测试看看:

?
1
2
3
4
5
6
7
8
insert into filter_fields(field1,field2,field3,field4,field5,field6) VALUES
('test01','test02','test03','test04','test05','test06');
insert into filter_fields(field1,field2,field3,field4,field5,field6) VALUES
('test11\ntest11','test12\n\n','test13','test14','test15','test16');
insert into filter_fields(field1,field2,field3,field4,field5,field6) VALUES
('test21\ttest21','test22\ttest22\ttest22','test23\t\t\t','test4','test5','test6');
insert into filter_fields(field1,field2,field3,field4,field5,field6) VALUES
('test21\rest21','test22\r\rest22\r\rest22','test23\r\r\r','test4','test5','test6');

其中数据里插入的特殊字符,可能连在一起,也有不连在一起的.
python测试代码:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# coding=utf-8
 
import MySQLdb
import sys
 
db_host = '127.0.0.1'  # 数据库地址
db_port = 3306     # 数据库端口
db_user = 'root'    # mysql用户名
db_pwd = 'yourpassword' # mysql用户密码,换成你的密码
db_name = 'test'    # 数据库名
db_table = 'filter_fields' # 数据库表
 
# 过滤sql字段结果中的\t\n
def extract_data(table_name):
  try:
    conn = MySQLdb.connect(host=db_host, port = db_port, user=db_user,
                passwd = db_pwd, db = db_name, charset = "utf8")
    cursor = conn.cursor()
  except MySQLdb.Error, e:
    print '数据库连接异常'
    sys.exit(1)
 
  try:
    sql = 'select * from %s;'%(table_name)
    cursor.execute(sql)
    rows = cursor.fetchall()
 
    print '====字段未过滤查询结果===='
    for row in rows:
      print row
 
    print '====字段过滤之后结果===='
    rows_list = []
    for row in rows:
      row_list = []
      for column in row:
        row_list.append(column.replace('\t', '').replace('\n', '').replace('\r', ''))
      rows_list.append(row_list)
      print rows_list[-1] # [-1]表示列表最后一个元素
    return rows_list
  except MySQLdb.Error, e:
    print '执行sql语句失败'
    cursor.close()
    conn.close()
    sys.exit(1)
 
if __name__ == '__main__':
  print 'begin:'
  rows = extract_data(db_table)
  pass

看看输出结果:

字段未过滤查询结果

?
1
2
3
4
(u'test01', u'test02', u'test03', u'test04', u'test05', u'test06')
(u'test11\ntest11', u'test12\n\n', u'test13', u'test14', u'test15', u'test16')
(u'test21\ttest21', u'test22\ttest22\ttest22', u'test23\t\t\t', u'test4', u'test5', u'test6')
(u'test21\rest21', u'test22\r\rest22\r\rest22', u'test23\r\r\r', u'test4', u'test5', u'test6')

字段过滤之后结果

?
1
2
3
4
[u'test01', u'test02', u'test03', u'test04', u'test05', u'test06']
[u'test11test11', u'test12', u'test13', u'test14', u'test15', u'test16']
[u'test21test21', u'test22test22test22', u'test23', u'test4', u'test5', u'test6']
[u'test21est21', u'test22est22est22', u'test23', u'test4', u'test5', u'test6']

可以看到,制表符,换行符,回车都被过滤了.
建议:最后说点题外话,不要小视\r,回车符.很多人以为回车符就是换行符,其实不是的,\r表示回车符,\n表示新行.之前代码里其实是过滤掉了\t\n的,但是抽取的数据还是不对,后来看了源码之后才发现,原来是没有过滤\r,就这个不同导致了很多数据抽取不对.

延伸 · 阅读

精彩推荐