目的:
是学习python 多线程的工作原理,及通过抓取400张图片这种IO密集型应用来查看多线程效率对比
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
|
import requests import urlparse import os import time import threading import Queue path = '/home/lidongwei/scrapy/owan_img_urls.txt' #path = '/home/lidongwei/scrapy/cc.txt' fetch_img_save_path = '/home/lidongwei/scrapy/owan_imgs/' # 读取保存再文件里面400个urls with open (path) as f : urls = f.readlines() urls = urls[: 400 ] # 使用Queue来线程通信,因为队列是线程安全的(就是默认这个队列已经有锁) q = Queue.Queue() for url in urls: q.put(url) start = time.time() def fetch_img_func(q): while True : try : # 不阻塞的读取队列数据 url = q.get_nowait() i = q.qsize() except Exception, e: print e break ; print 'Current Thread Name Runing %s ... 11' % threading.currentThread().name url = url.strip() img_path = urlparse.urlparse(url).path ext = os.path.splitext(img_path)[ 1 ] print 'handle %s pic... pic url %s ' % (i, url) res = requests.get(url, stream = True ) if res.status_code = = 200 : save_img_path = '%s%s%s' % (fetch_img_save_path, i, ext) # 保存下载的图片 with open (save_img_path, 'wb' ) as fs: for chunk in res.iter_content( 1024 ): fs.write(chunk) print 'save %s pic ' % i # 可以开多个线程测试不同效果 t1 = threading.Thread(target = fetch_img_func, args = (q, ), name = "child_thread_1" ) #t2 = threading.Thread(target=fetch_img_func, args=(q, ), name="child_thread_2") #t3 = threading.Thread(target=fetch_img_func, args=(q, ), name="child_thread_3") #t4 = threading.Thread(target=fetch_img_func, args=(q, ), name="child_thread_4") t1.start() #t2.start() #t3.start() #t4.start() t1.join() #t2.join() #t3.join() #t4.join() end = time.time() print 'Done %s ' % (end - start) |
实验结果
400图片
1
2
3
4
|
4 线程 Done 12.443133831 3 线程 Done 12.9201757908 2 线程 Done 32.8628299236 1 线程 Done 54.6115460396 |
总结
Python 自带GIL 大锁, 没有真正意义上的多线程并行执行。GIL 大锁会在线程阻塞的时候释放,此时等待的线程就可以激活工作,这样如此类推,大大提高IO阻塞型应用的效率。