脚本之家,脚本语言编程技术及教程分享平台!
分类导航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服务器之家 - 脚本之家 - Python - keras的三种模型实现与区别说明

keras的三种模型实现与区别说明

2020-07-04 09:30NanciZhao Python

这篇文章主要介绍了keras的三种模型实现与区别说明,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

前言

一、keras提供了三种定义模型的方式

1. 序列式(Sequential) API

序贯(sequential)API允许你为大多数问题逐层堆叠创建模型。虽然说对很多的应用来说,这样的一个手法很简单也解决了很多深度学习网络结构的构建,但是它也有限制-它不允许你创建模型有共享层或有多个输入或输出的网络。

2. 函数式(Functional) API

Keras函数式(functional)API为构建网络模型提供了更为灵活的方式。

它允许你定义多个输入或输出模型以及共享图层的模型。除此之外,它允许你定义动态(ad-hoc)的非周期性(acyclic)网络图。

模型是通过创建层的实例(layer instances)并将它们直接相互连接成对来定义的,然后定义一个模型(model)来指定那些层是要作为这个模型的输入和输出。

3.子类(Subclassing) API

补充知识:keras pytorch 构建模型对比

使用CIFAR10数据集,用三种框架构建Residual_Network作为例子,比较框架间的异同。

数据集格式

pytorch的数据集格式

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import torch
import torch.nn as nn
import torchvision
 
# Download and construct CIFAR-10 dataset.
train_dataset = torchvision.datasets.CIFAR10(root='../../data/',
                       train=True,
                       download=True)
 
# Fetch one data pair (read data from disk).
image, label = train_dataset[0]
print (image.size()) # torch.Size([3, 32, 32])
print (label) # 6
print (train_dataset.data.shape) # (50000, 32, 32, 3)
# type(train_dataset.targets)==list
print (len(train_dataset.targets)) # 50000
 
# Data loader (this provides queues and threads in a very simple way).
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                      batch_size=64,
                      shuffle=True)
"""
# 演示DataLoader返回的数据结构
# When iteration starts, queue and thread start to load data from files.
data_iter = iter(train_loader)
 
# Mini-batch images and labels.
images, labels = data_iter.next()
print(images.shape) # torch.Size([100, 3, 32, 32])
print(labels.shape)
# torch.Size([100]) 可见经过DataLoader后,labels由list变成了pytorch内置的tensor格式
"""
# 一般使用的话是下面这种
# Actual usage of the data loader is as below.
for images, labels in train_loader:
  # Training code should be written here.
  pass

keras的数据格式

?
1
2
3
4
5
6
import keras
from keras.datasets import cifar10
 
(train_x, train_y) , (test_x, test_y) = cifar10.load_data()
print(train_x.shape) # ndarray 类型: (50000, 32, 32, 3)
print(train_y.shape) # (50000, 1)

输入网络的数据格式不同

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
"""
1: pytorch 都是内置torch.xxTensor输入网络,而keras的则是原生ndarray类型
2: 对于multi-class的其中一种loss,即cross-entropy loss 而言,
  pytorch的api为 CorssEntropyLoss, 但y_true不能用one-hoe编码!这与keras,tensorflow     都不同。tensorflow相应的api为softmax_cross_entropy
  他们的api都仅限于multi-class classification
3*: 其实上面提到的api都属于categorical cross-entropy loss,
  又叫 softmax loss,是函数内部先进行了 softmax 激活,再经过cross-entropy loss。
  这个loss是cross-entropy loss的变种,
  cross-entropy loss又叫logistic loss 或 multinomial logistic loss。
  实现这种loss的函数不包括激活函数,需要自定义。
  pytorch对应的api为BCEloss(仅限于 binary classification),
  tensorflow 对应的api为 log_loss。
  cross-entropy loss的第二个变种是 binary cross-entropy loss 又叫 sigmoid cross-  entropy loss。
  函数内部先进行了sigmoid激活,再经过cross-entropy loss。
  pytorch对应的api为BCEWithLogitsLoss,
  tensorflow对应的api为sigmoid_cross_entropy
"""
 
# pytorch
criterion = nn.CrossEntropyLoss()
...
for epoch in range(num_epochs):
  for i, (images, labels) in enumerate(train_loader):
    images = images.to(device)
    labels = labels.to(device)
    
    # Forward pass
    outputs = model(images)
    # 对于multi-class cross-entropy loss
    # 输入y_true不需要one-hot编码
    loss = criterion(outputs, labels)
...
 
# keras
# 对于multi-class cross-entropy loss
# 输入y_true需要one-hot编码
train_y = keras.utils.to_categorical(train_y,10)
...
model.fit_generator(datagen.flow(train_x, train_y, batch_size=128),
          validation_data=[test_x,test_y],
          epochs=epochs,steps_per_epoch=steps_per_epoch, verbose=1)
...

整体流程

keras 流程

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
model = myModel()
model.compile(optimizer=Adam(0.001),loss="categorical_crossentropy",metrics=["accuracy"])
model.fit_generator(datagen.flow(train_x, train_y, batch_size=128),
          validation_data=[test_x,test_y],
          epochs=epochs,steps_per_epoch=steps_per_epoch, verbose=1, workers=4)
#Evaluate the accuracy of the test dataset
accuracy = model.evaluate(x=test_x,y=test_y,batch_size=128)
# 保存整个网络
model.save("cifar10model.h5")
"""
# https://blog.csdn.net/jiandanjinxin/article/details/77152530
# 使用
# keras.models.load_model("cifar10model.h5")
 
# 只保存architecture
# json_string = model.to_json()
# open('my_model_architecture.json','w').write(json_string) 
# 使用
# from keras.models import model_from_json
#model = model_from_json(open('my_model_architecture.json').read())
 
# 只保存weights
# model.save_weights('my_model_weights.h5')
#需要在代码中初始化一个完全相同的模型
# model.load_weights('my_model_weights.h5')
#需要加载权重到不同的网络结构(有些层一样)中,例如fine-tune或transfer-learning,可以通过层名字来加载模型
# model.load_weights('my_model_weights.h5', by_name=True)
"""

pytorch 流程

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
model = myModel()
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
 
for epoch in range(num_epochs):
  for i, (images, labels) in enumerate(train_loader):
    images = images.to(device)
    labels = labels.to(device)
    
    # Forward pass
    outputs = model(images)
    loss = criterion(outputs, labels)
    
    # Backward and optimize
        # 将上次迭代计算的梯度值清0
    optimizer.zero_grad()
    # 反向传播,计算梯度值
    loss.backward()
    # 更新权值参数
    optimizer.step()
    
# model.eval(),让model变成测试模式,对dropout和batch normalization的操作在训练和测试的时候是不一样的
# eval()时,pytorch会自动把BN和DropOut固定住,不会取平均,而是用训练好的值。
# 不然的话,一旦test的batch_size过小,很容易就会被BN层导致生成图片颜色失真极大。
model.eval()
with torch.no_grad():
  correct = 0
  total = 0
  for images, labels in test_loader:
    images = images.to(device)
    labels = labels.to(device)
    outputs = model(images)
    _, predicted = torch.max(outputs.data, 1)
    total += labels.size(0)
    correct += (predicted == labels).sum().item()
 
  print('Accuracy of the model on the test images: {} %'.format(100 * correct / total))
 
# Save the model checkpoint
# 这是只保存了weights
torch.save(model.state_dict(), 'resnet.ckpt')
"""
# 使用
# myModel.load_state_dict(torch.load('params.ckpt'))
# 若想保存整个网络(architecture + weights)
# torch.save(resnet, 'model.ckpt')
# 使用
#model = torch.load('model.ckpt')
"""

对比流程

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
#https://blog.csdn.net/dss_dssssd/article/details/83892824
"""
1: 准备数据(注意数据格式不同)
2: 定义网络结构model
3: 定义损失函数
4: 定义优化算法 optimizer
5: 训练-keras
    5.1:编译模型(传入loss function和optimizer等)
    5.2:训练模型(fit or fit_generator,传入数据)
5: 训练-pytorch
迭代训练:
    5.1:准备好tensor形式的输入数据和标签(可选)
    5.2:前向传播计算网络输出output和计算损失函数loss
    5.3:反向传播更新参数
        以下三句话一句也不能少:
        5.3.1:将上次迭代计算的梯度值清0
            optimizer.zero_grad()
        5.3.2:反向传播,计算梯度值
            loss.backward()
        5.3.3:更新权值参数
            optimizer.step()
6: 在测试集上测试-keras
    model.evaluate
6: 在测试集上测试-pytorch
  遍历测试集,自定义metric
7: 保存网络(可选) 具体实现参考上面代码
"""

构建网络

对比网络

1、对于keras,不需要input_channels,函数内部会自动获得,而pytorch则需要显示声明input_channels

2、对于pytorch Conv2d需要指定padding,而keras的则是same和valid两种选项(valid即padding=0)

3、keras的Flatten操作可以视作pytorch中的view

4、keras的dimension一般顺序是(H, W, C) (tensorflow 为backend的话),而pytorch的顺序则是( C, H, W)

5、具体的变换可以参照下方,但由于没有学过pytorch,keras也刚入门,不能保证正确,日后学的更深入了之后再来看看。

pytorch 构建Residual-network

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
 
 
# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
 
# Hyper-parameters
num_epochs = 80
learning_rate = 0.001
 
# Image preprocessing modules
transform = transforms.Compose([
  transforms.Pad(4),
  transforms.RandomHorizontalFlip(),
  transforms.RandomCrop(32),
  transforms.ToTensor()])
 
# CIFAR-10 dataset
# train_dataset.data.shape
#Out[31]: (50000, 32, 32, 3)
# train_dataset.targets list
# len(list)=5000
train_dataset = torchvision.datasets.CIFAR10(root='./data/',
                       train=True,
                       transform=transform,
                       download=True)
 
test_dataset = torchvision.datasets.CIFAR10(root='../../data/',
                      train=False,
                      transform=transforms.ToTensor())
 
# Data loader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                      batch_size=100,
                      shuffle=True)
 
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                     batch_size=100,
                     shuffle=False)
 
# 3x3 convolution
def conv3x3(in_channels, out_channels, stride=1):
  return nn.Conv2d(in_channels, out_channels, kernel_size=3,
           stride=stride, padding=1, bias=False)
 
# Residual block
class ResidualBlock(nn.Module):
  def __init__(self, in_channels, out_channels, stride=1, downsample=None):
    super(ResidualBlock, self).__init__()
    self.conv1 = conv3x3(in_channels, out_channels, stride)
    self.bn1 = nn.BatchNorm2d(out_channels)
    self.relu = nn.ReLU(inplace=True)
    self.conv2 = conv3x3(out_channels, out_channels)
    self.bn2 = nn.BatchNorm2d(out_channels)
    self.downsample = downsample
    
  def forward(self, x):
    residual = x
    out = self.conv1(x)
    out = self.bn1(out)
    out = self.relu(out)
    out = self.conv2(out)
    out = self.bn2(out)
    if self.downsample:
      residual = self.downsample(x)
    out += residual
    out = self.relu(out)
    return out
 
# ResNet
class ResNet(nn.Module):
  def __init__(self, block, layers, num_classes=10):
    super(ResNet, self).__init__()
    self.in_channels = 16
    self.conv = conv3x3(3, 16)
    self.bn = nn.BatchNorm2d(16)
    self.relu = nn.ReLU(inplace=True)
    self.layer1 = self.make_layer(block, 16, layers[0])
    self.layer2 = self.make_layer(block, 32, layers[1], 2)
    self.layer3 = self.make_layer(block, 64, layers[2], 2)
    self.avg_pool = nn.AvgPool2d(8)
    self.fc = nn.Linear(64, num_classes)
    
  def make_layer(self, block, out_channels, blocks, stride=1):
    downsample = None
    if (stride != 1) or (self.in_channels != out_channels):
      downsample = nn.Sequential(
        conv3x3(self.in_channels, out_channels, stride=stride),
        nn.BatchNorm2d(out_channels))
    layers = []
    layers.append(block(self.in_channels, out_channels, stride, downsample))
    self.in_channels = out_channels
    for i in range(1, blocks):
      layers.append(block(out_channels, out_channels))
    # [*[1,2,3]]
    # Out[96]: [1, 2, 3]
    return nn.Sequential(*layers)
  
  def forward(self, x):
    out = self.conv(x) # out.shape:torch.Size([100, 16, 32, 32])
    out = self.bn(out)
    out = self.relu(out)
    out = self.layer1(out)
    out = self.layer2(out)
    out = self.layer3(out)
    out = self.avg_pool(out)
    out = out.view(out.size(0), -1)
    out = self.fc(out)
    return out
  
model = ResNet(ResidualBlock, [2, 2, 2]).to(device)
 
# pip install torchsummary or
# git clone https://github.com/sksq96/pytorch-summary
from torchsummary import summary
# input_size=(C,H,W)
summary(model, input_size=(3, 32, 32))
 
images,labels = iter(train_loader).next()
outputs = model(images)
 
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
 
# For updating learning rate
def update_lr(optimizer, lr): 
  for param_group in optimizer.param_groups:
    param_group['lr'] = lr
 
# Train the model
total_step = len(train_loader)
curr_lr = learning_rate
for epoch in range(num_epochs):
  for i, (images, labels) in enumerate(train_loader):
    images = images.to(device)
    labels = labels.to(device)
    
    # Forward pass
    outputs = model(images)
    loss = criterion(outputs, labels)
    
    # Backward and optimize
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    
    if (i+1) % 100 == 0:
      print ("Epoch [{}/{}], Step [{}/{}] Loss: {:.4f}"
          .format(epoch+1, num_epochs, i+1, total_step, loss.item()))
 
  # Decay learning rate
  if (epoch+1) % 20 == 0:
    curr_lr /= 3
    update_lr(optimizer, curr_lr)
 
# Test the model
model.eval()
with torch.no_grad():
  correct = 0
  total = 0
  for images, labels in test_loader:
    images = images.to(device)
    labels = labels.to(device)
    outputs = model(images)
    _, predicted = torch.max(outputs.data, 1)
    total += labels.size(0)
    correct += (predicted == labels).sum().item()
 
  print('Accuracy of the model on the test images: {} %'.format(100 * correct / total))
 
# Save the model checkpoint
torch.save(model.state_dict(), 'resnet.ckpt')

keras 对应的网络构建部分

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
"""
#pytorch
def conv3x3(in_channels, out_channels, stride=1):
  return nn.Conv2d(in_channels, out_channels, kernel_size=3,
           stride=stride, padding=1, bias=False)
"""
 
def conv3x3(x,out_channels, stride=1):
  #out = spatial_2d_padding(x,padding=((1, 1), (1, 1)), data_format="channels_last")
  return Conv2D(filters=out_channels, kernel_size=[3,3], strides=(stride,stride),padding="same")(x)
 
"""
# pytorch
# Residual block
class ResidualBlock(nn.Module):
  def __init__(self, in_channels, out_channels, stride=1, downsample=None):
    super(ResidualBlock, self).__init__()
    self.conv1 = conv3x3(in_channels, out_channels, stride)
    self.bn1 = nn.BatchNorm2d(out_channels)
    self.relu = nn.ReLU(inplace=True)
    self.conv2 = conv3x3(out_channels, out_channels)
    self.bn2 = nn.BatchNorm2d(out_channels)
    self.downsample = downsample
    
  def forward(self, x):
    residual = x
    out = self.conv1(x)
    out = self.bn1(out)
    out = self.relu(out)
    out = self.conv2(out)
    out = self.bn2(out)
    if self.downsample:
      residual = self.downsample(x)
    out += residual
    out = self.relu(out)
    return out
"""
def ResidualBlock(x, out_channels, stride=1, downsample=False):
  residual = x
  out = conv3x3(x, out_channels,stride)
  out = BatchNormalization()(out)
  out = Activation("relu")(out)
  out = conv3x3(out, out_channels)
  out = BatchNormalization()(out)
  if downsample:
    residual = conv3x3(residual, out_channels, stride=stride)
    residual = BatchNormalization()(residual)
  out = keras.layers.add([residual,out])
  out = Activation("relu")(out)
  return out
"""
#pytorch
def make_layer(self, block, out_channels, blocks, stride=1):
    downsample = None
    if (stride != 1) or (self.in_channels != out_channels):
      downsample = nn.Sequential(
        conv3x3(self.in_channels, out_channels, stride=stride),
        nn.BatchNorm2d(out_channels))
    layers = []
    layers.append(block(self.in_channels, out_channels, stride, downsample))
    self.in_channels = out_channels
    for i in range(1, blocks):
      layers.append(block(out_channels, out_channels))
    # [*[1,2,3]]
    # Out[96]: [1, 2, 3]
    return nn.Sequential(*layers)
"""
def make_layer(x, out_channels, blocks, stride=1):
    # tf backend: x.output_shape[-1]==out_channels
    #print("x.shape[-1] ",x.shape[-1])
    downsample = False
    if (stride != 1) or (out_channels != x.shape[-1]):
      downsample = True
    out = ResidualBlock(x, out_channels, stride, downsample)
    for i in range(1, blocks):
      out = ResidualBlock(out, out_channels)
    return out
 
def KerasResidual(input_shape):
  images = Input(input_shape)
  out = conv3x3(images,16) # out.shape=(None, 32, 32, 16)
  out = BatchNormalization()(out)
  out = Activation("relu")(out)
  layer1_out = make_layer(out, 16, layers[0])
  layer2_out = make_layer(layer1_out, 32, layers[1], 2)
  layer3_out = make_layer(layer2_out, 64, layers[2], 2)
  out = AveragePooling2D(pool_size=(8,8))(layer3_out)
  out = Flatten()(out)
  # pytorch 的nn.CrossEntropyLoss()会首先执行softmax计算
  # 当换成keras时,没有tf类似的softmax_cross_entropy
  # 自带的categorical_crossentropy不会执行激活操作,因此得在Dense层加上activation
  out = Dense(units=10, activation="softmax")(out)
  model = Model(inputs=images,outputs=out)
  return model
 
input_shape=(32, 32, 3)
layers=[2, 2, 2]
mymodel = KerasResidual(input_shape)
mymodel.summary()

pytorch model summary

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
----------------------------------------------------------------
    Layer (type)        Output Shape     Param #
================================================================
      Conv2d-1      [-1, 16, 32, 32]       432
    BatchNorm2d-2      [-1, 16, 32, 32]       32
       ReLU-3      [-1, 16, 32, 32]        0
      Conv2d-4      [-1, 16, 32, 32]      2,304
    BatchNorm2d-5      [-1, 16, 32, 32]       32
       ReLU-6      [-1, 16, 32, 32]        0
      Conv2d-7      [-1, 16, 32, 32]      2,304
    BatchNorm2d-8      [-1, 16, 32, 32]       32
       ReLU-9      [-1, 16, 32, 32]        0
  ResidualBlock-10      [-1, 16, 32, 32]        0
      Conv2d-11      [-1, 16, 32, 32]      2,304
   BatchNorm2d-12      [-1, 16, 32, 32]       32
       ReLU-13      [-1, 16, 32, 32]        0
      Conv2d-14      [-1, 16, 32, 32]      2,304
   BatchNorm2d-15      [-1, 16, 32, 32]       32
       ReLU-16      [-1, 16, 32, 32]        0
  ResidualBlock-17      [-1, 16, 32, 32]        0
      Conv2d-18      [-1, 32, 16, 16]      4,608
   BatchNorm2d-19      [-1, 32, 16, 16]       64
       ReLU-20      [-1, 32, 16, 16]        0
      Conv2d-21      [-1, 32, 16, 16]      9,216
   BatchNorm2d-22      [-1, 32, 16, 16]       64
      Conv2d-23      [-1, 32, 16, 16]      4,608
   BatchNorm2d-24      [-1, 32, 16, 16]       64
       ReLU-25      [-1, 32, 16, 16]        0
  ResidualBlock-26      [-1, 32, 16, 16]        0
      Conv2d-27      [-1, 32, 16, 16]      9,216
   BatchNorm2d-28      [-1, 32, 16, 16]       64
       ReLU-29      [-1, 32, 16, 16]        0
      Conv2d-30      [-1, 32, 16, 16]      9,216
   BatchNorm2d-31      [-1, 32, 16, 16]       64
       ReLU-32      [-1, 32, 16, 16]        0
  ResidualBlock-33      [-1, 32, 16, 16]        0
      Conv2d-34       [-1, 64, 8, 8]     18,432
   BatchNorm2d-35       [-1, 64, 8, 8]       128
       ReLU-36       [-1, 64, 8, 8]        0
      Conv2d-37       [-1, 64, 8, 8]     36,864
   BatchNorm2d-38       [-1, 64, 8, 8]       128
      Conv2d-39       [-1, 64, 8, 8]     18,432
   BatchNorm2d-40       [-1, 64, 8, 8]       128
       ReLU-41       [-1, 64, 8, 8]        0
  ResidualBlock-42       [-1, 64, 8, 8]        0
      Conv2d-43       [-1, 64, 8, 8]     36,864
   BatchNorm2d-44       [-1, 64, 8, 8]       128
       ReLU-45       [-1, 64, 8, 8]        0
      Conv2d-46       [-1, 64, 8, 8]     36,864
   BatchNorm2d-47       [-1, 64, 8, 8]       128
       ReLU-48       [-1, 64, 8, 8]        0
  ResidualBlock-49       [-1, 64, 8, 8]        0
    AvgPool2d-50       [-1, 64, 1, 1]        0
      Linear-51          [-1, 10]       650
================================================================
Total params: 195,738
Trainable params: 195,738
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.01
Forward/backward pass size (MB): 3.63
Params size (MB): 0.75
Estimated Total Size (MB): 4.38
----------------------------------------------------------------

keras model summary

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
__________________________________________________________________________________________________
Layer (type)          Output Shape     Param #   Connected to          
==================================================================================================
input_26 (InputLayer)      (None, 32, 32, 30                     
__________________________________________________________________________________________________
conv2d_103 (Conv2D)       (None, 32, 32, 16448     input_26[0][0]         
__________________________________________________________________________________________________
batch_normalization_99 (BatchNo (None, 32, 32, 1664     conv2d_103[0][0]        
__________________________________________________________________________________________________
activation_87 (Activation)   (None, 32, 32, 160      batch_normalization_99[0][0]  
__________________________________________________________________________________________________
conv2d_104 (Conv2D)       (None, 32, 32, 162320    activation_87[0][0]      
__________________________________________________________________________________________________
batch_normalization_100 (BatchN (None, 32, 32, 1664     conv2d_104[0][0]        
__________________________________________________________________________________________________
activation_88 (Activation)   (None, 32, 32, 160      batch_normalization_100[0][0
__________________________________________________________________________________________________
conv2d_105 (Conv2D)       (None, 32, 32, 162320    activation_88[0][0]      
__________________________________________________________________________________________________
batch_normalization_101 (BatchN (None, 32, 32, 1664     conv2d_105[0][0]        
__________________________________________________________________________________________________
add_34 (Add)          (None, 32, 32, 160      activation_87[0][0]      
                                 batch_normalization_101[0][0
__________________________________________________________________________________________________
activation_89 (Activation)   (None, 32, 32, 160      add_34[0][0]          
__________________________________________________________________________________________________
conv2d_106 (Conv2D)       (None, 32, 32, 162320    activation_89[0][0]      
__________________________________________________________________________________________________
batch_normalization_102 (BatchN (None, 32, 32, 1664     conv2d_106[0][0]        
__________________________________________________________________________________________________
activation_90 (Activation)   (None, 32, 32, 160      batch_normalization_102[0][0
__________________________________________________________________________________________________
conv2d_107 (Conv2D)       (None, 32, 32, 162320    activation_90[0][0]      
__________________________________________________________________________________________________
batch_normalization_103 (BatchN (None, 32, 32, 1664     conv2d_107[0][0]        
__________________________________________________________________________________________________
add_35 (Add)          (None, 32, 32, 160      activation_89[0][0]      
                                 batch_normalization_103[0][0
__________________________________________________________________________________________________
activation_91 (Activation)   (None, 32, 32, 160      add_35[0][0]          
__________________________________________________________________________________________________
conv2d_108 (Conv2D)       (None, 16, 16, 324640    activation_91[0][0]      
__________________________________________________________________________________________________
batch_normalization_104 (BatchN (None, 16, 16, 32128     conv2d_108[0][0]        
__________________________________________________________________________________________________
activation_92 (Activation)   (None, 16, 16, 320      batch_normalization_104[0][0
__________________________________________________________________________________________________
conv2d_110 (Conv2D)       (None, 16, 16, 324640    activation_91[0][0]      
__________________________________________________________________________________________________
conv2d_109 (Conv2D)       (None, 16, 16, 329248    activation_92[0][0]      
__________________________________________________________________________________________________
batch_normalization_106 (BatchN (None, 16, 16, 32128     conv2d_110[0][0]        
__________________________________________________________________________________________________
batch_normalization_105 (BatchN (None, 16, 16, 32128     conv2d_109[0][0]        
__________________________________________________________________________________________________
add_36 (Add)          (None, 16, 16, 320      batch_normalization_106[0][0
                                 batch_normalization_105[0][0
__________________________________________________________________________________________________
activation_93 (Activation)   (None, 16, 16, 320      add_36[0][0]          
__________________________________________________________________________________________________
conv2d_111 (Conv2D)       (None, 16, 16, 329248    activation_93[0][0]      
__________________________________________________________________________________________________
batch_normalization_107 (BatchN (None, 16, 16, 32128     conv2d_111[0][0]        
__________________________________________________________________________________________________
activation_94 (Activation)   (None, 16, 16, 320      batch_normalization_107[0][0
__________________________________________________________________________________________________
conv2d_112 (Conv2D)       (None, 16, 16, 329248    activation_94[0][0]      
__________________________________________________________________________________________________
batch_normalization_108 (BatchN (None, 16, 16, 32128     conv2d_112[0][0]        
__________________________________________________________________________________________________
add_37 (Add)          (None, 16, 16, 320      activation_93[0][0]      
                                 batch_normalization_108[0][0
__________________________________________________________________________________________________
activation_95 (Activation)   (None, 16, 16, 320      add_37[0][0]          
__________________________________________________________________________________________________
conv2d_113 (Conv2D)       (None, 8, 8, 64)   18496    activation_95[0][0]      
__________________________________________________________________________________________________
batch_normalization_109 (BatchN (None, 8, 8, 64)   256     conv2d_113[0][0]        
__________________________________________________________________________________________________
activation_96 (Activation)   (None, 8, 8, 64)   0      batch_normalization_109[0][0
__________________________________________________________________________________________________
conv2d_115 (Conv2D)       (None, 8, 8, 64)   18496    activation_95[0][0]      
__________________________________________________________________________________________________
conv2d_114 (Conv2D)       (None, 8, 8, 64)   36928    activation_96[0][0]      
__________________________________________________________________________________________________
batch_normalization_111 (BatchN (None, 8, 8, 64)   256     conv2d_115[0][0]        
__________________________________________________________________________________________________
batch_normalization_110 (BatchN (None, 8, 8, 64)   256     conv2d_114[0][0]        
__________________________________________________________________________________________________
add_38 (Add)          (None, 8, 8, 64)   0      batch_normalization_111[0][0
                                 batch_normalization_110[0][0
__________________________________________________________________________________________________
activation_97 (Activation)   (None, 8, 8, 64)   0      add_38[0][0]          
__________________________________________________________________________________________________
conv2d_116 (Conv2D)       (None, 8, 8, 64)   36928    activation_97[0][0]      
__________________________________________________________________________________________________
batch_normalization_112 (BatchN (None, 8, 8, 64)   256     conv2d_116[0][0]        
__________________________________________________________________________________________________
activation_98 (Activation)   (None, 8, 8, 64)   0      batch_normalization_112[0][0
__________________________________________________________________________________________________
conv2d_117 (Conv2D)       (None, 8, 8, 64)   36928    activation_98[0][0]      
__________________________________________________________________________________________________
batch_normalization_113 (BatchN (None, 8, 8, 64)   256     conv2d_117[0][0]        
__________________________________________________________________________________________________
add_39 (Add)          (None, 8, 8, 64)   0      activation_97[0][0]      
                                 batch_normalization_113[0][0
__________________________________________________________________________________________________
activation_99 (Activation)   (None, 8, 8, 64)   0      add_39[0][0]          
__________________________________________________________________________________________________
average_pooling2d_2 (AveragePoo (None, 1, 1, 64)   0      activation_99[0][0]      
__________________________________________________________________________________________________
flatten_2 (Flatten)       (None, 64)      0      average_pooling2d_2[0][0]   
__________________________________________________________________________________________________
dense_2 (Dense)         (None, 10)      650     flatten_2[0][0]        
==================================================================================================
Total params: 197,418
Trainable params: 196,298
Non-trainable params: 1,120
__________________________________________________________________________________________________

以上这篇keras的三种模型实现与区别说明就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。

原文链接:https://blog.csdn.net/yeziyezi1986/article/details/106780379

延伸 · 阅读

精彩推荐