本文实例讲述了Python使用matplotlib绘制动画的方法。分享给大家供大家参考。具体分析如下:
matplotlib从1.1.0版本以后就开始支持绘制动画
下面是几个的示例:
第一个例子使用generator,每隔两秒,就运行函数data_gen:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation fig = plt.figure() axes1 = fig.add_subplot( 111 ) line, = axes1.plot(np.random.rand( 10 )) #因为update的参数是调用函数data_gen, #所以第一个默认参数不能是framenum def update(data): line.set_ydata(data) return line, # 每次生成10个随机数据 def data_gen(): while True : yield np.random.rand( 10 ) ani = animation.FuncAnimation(fig, update, data_gen, interval = 2 * 1000 ) plt.show() |
第二个例子使用list(metric),每次从metric中取一行数据作为参数送入update中:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation start = [ 1 , 0.18 , 0.63 , 0.29 , 0.03 , 0.24 , 0.86 , 0.07 , 0.58 , 0 ] metric = [[ 0.03 , 0.86 , 0.65 , 0.34 , 0.34 , 0.02 , 0.22 , 0.74 , 0.66 , 0.65 ], [ 0.43 , 0.18 , 0.63 , 0.29 , 0.03 , 0.24 , 0.86 , 0.07 , 0.58 , 0.55 ], [ 0.66 , 0.75 , 0.01 , 0.94 , 0.72 , 0.77 , 0.20 , 0.66 , 0.81 , 0.52 ] ] fig = plt.figure() window = fig.add_subplot( 111 ) line, = window.plot(start) #如果是参数是list,则默认每次取list中的一个元素, #即metric[0],metric[1],... def update(data): line.set_ydata(data) return line, ani = animation.FuncAnimation(fig, update, metric, interval = 2 * 1000 ) plt.show() |
第三个例子:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|
import numpy as np from matplotlib import pyplot as plt from matplotlib import animation # First set up the figure, the axis, and the plot element we want to animate fig = plt.figure() ax = plt.axes(xlim = ( 0 , 2 ), ylim = ( - 2 , 2 )) line, = ax.plot([], [], lw = 2 ) # initialization function: plot the background of each frame def init(): line.set_data([], []) return line, # animation function. This is called sequentially # note: i is framenumber def animate(i): x = np.linspace( 0 , 2 , 1000 ) y = np.sin( 2 * np.pi * (x - 0.01 * i)) line.set_data(x, y) return line, # call the animator. blit=True means only re-draw the parts that have changed. anim = animation.FuncAnimation(fig, animate, init_func = init, frames = 200 , interval = 20 , blit = True ) #anim.save('basic_animation.mp4', fps=30, extra_args=['-vcodec', 'libx264']) plt.show() |
第四个例子:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
|
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation # 每次产生一个新的坐标点 def data_gen(): t = data_gen.t cnt = 0 while cnt < 1000 : cnt + = 1 t + = 0.05 yield t, np.sin( 2 * np.pi * t) * np.exp( - t / 10. ) data_gen.t = 0 # 绘图 fig, ax = plt.subplots() line, = ax.plot([], [], lw = 2 ) ax.set_ylim( - 1.1 , 1.1 ) ax.set_xlim( 0 , 5 ) ax.grid() xdata, ydata = [], [] # 因为run的参数是调用函数data_gen, # 所以第一个参数可以不是framenum:设置line的数据,返回line def run(data): # update the data t,y = data xdata.append(t) ydata.append(y) xmin, xmax = ax.get_xlim() if t > = xmax: ax.set_xlim(xmin, 2 * xmax) ax.figure.canvas.draw() line.set_data(xdata, ydata) return line, # 每隔10秒调用函数run,run的参数为函数data_gen, # 表示图形只更新需要绘制的元素 ani = animation.FuncAnimation(fig, run, data_gen, blit = True , interval = 10 , repeat = False ) plt.show() |
再看下面的例子:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
|
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation #第一个参数必须为framenum def update_line(num, data, line): line.set_data(data[...,:num]) return line, fig1 = plt.figure() data = np.random.rand( 2 , 15 ) l, = plt.plot([], [], 'r-' ) plt.xlim( 0 , 1 ) plt.ylim( 0 , 1 ) plt.xlabel( 'x' ) plt.title( 'test' ) #framenum从1增加大25后,返回再次从1增加到25,再返回... line_ani = animation.FuncAnimation(fig1, update_line, 25 ,fargs = (data, l),interval = 50 , blit = True ) #等同于 #line_ani = animation.FuncAnimation(fig1, update_line, frames=25,fargs=(data, l), # interval=50, blit=True) #忽略frames参数,framenum会从1一直增加下去知道无穷 #由于frame达到25以后,数据不再改变,所以你会发现到达25以后图形不再变化了 #line_ani = animation.FuncAnimation(fig1, update_line, fargs=(data, l), # interval=50, blit=True) plt.show() |
希望本文所述对大家的python程序设计有所帮助。