1.在搭建网络开始时,会调用到 keras.models的Sequential()方法,返回一个model参数表示模型
2.model参数里面有个fit()方法,用于把训练集传进网络。fit()返回一个参数,该参数包含训练集和验证集的准确性acc和错误值loss,用这些数据画成图表即可。
如:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
history = model.fit(x_train, y_train, batch_size = 32 , epochs = 5 , validation_split = 0.25 ) #获取数据 #########画图 acc = history.history[ 'acc' ] #获取训练集准确性数据 val_acc = history.history[ 'val_acc' ] #获取验证集准确性数据 loss = history.history[ 'loss' ] #获取训练集错误值数据 val_loss = history.history[ 'val_loss' ] #获取验证集错误值数据 epochs = range ( 1 , len (acc) + 1 ) plt.plot(epochs,acc, 'bo' ,label = 'Trainning acc' ) #以epochs为横坐标,以训练集准确性为纵坐标 plt.plot(epochs,val_acc, 'b' ,label = 'Vaildation acc' ) #以epochs为横坐标,以验证集准确性为纵坐标 plt.legend() #绘制图例,即标明图中的线段代表何种含义 plt.figure() #创建一个新的图表 plt.plot(epochs,loss, 'bo' ,label = 'Trainning loss' ) plt.plot(epochs,val_loss, 'b' ,label = 'Vaildation loss' ) plt.legend() ##绘制图例,即标明图中的线段代表何种含义 plt.show() #显示所有图表 |
得到效果:
完整代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
|
import keras from keras.datasets import mnist from keras.layers import Conv2D, MaxPool2D, Dense, Flatten,Dropout from keras.models import Sequential import matplotlib.pyplot as plt (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.reshape( - 1 , 28 , 28 , 1 ) x_test = x_test.reshape( - 1 , 28 , 28 , 1 ) x_train = x_train / 255. x_test = x_test / 255. y_train = keras.utils.to_categorical(y_train) y_test = keras.utils.to_categorical(y_test) model = Sequential() model.add(Conv2D( 20 ,( 5 , 5 ),strides = ( 1 , 1 ),input_shape = ( 28 , 28 , 1 ),padding = 'valid' ,activation = 'relu' ,kernel_initializer = 'uniform' )) model.add(MaxPool2D(pool_size = ( 2 , 2 ),strides = ( 2 , 2 ))) model.add(Conv2D( 64 ,( 5 , 5 ),strides = ( 1 , 1 ),padding = 'valid' ,activation = 'relu' ,kernel_initializer = 'uniform' )) model.add(MaxPool2D(pool_size = ( 2 , 2 ),strides = ( 2 , 2 ))) model.add(Flatten()) model.add(Dense( 500 ,activation = 'relu' )) model.add(Dropout( 0.2 )) model.add(Dense( 10 ,activation = 'softmax' )) model. compile ( 'sgd' , loss = 'categorical_crossentropy' , metrics = [ 'accuracy' ]) #随机梯度下降 history = model.fit(x_train, y_train, batch_size = 32 , epochs = 5 , validation_split = 0.25 ) #获取数据 #########画图 acc = history.history[ 'acc' ] #获取训练集准确性数据 val_acc = history.history[ 'val_acc' ] #获取验证集准确性数据 loss = history.history[ 'loss' ] #获取训练集错误值数据 val_loss = history.history[ 'val_loss' ] #获取验证集错误值数据 epochs = range ( 1 , len (acc) + 1 ) plt.plot(epochs,acc, 'bo' ,label = 'Trainning acc' ) #以epochs为横坐标,以训练集准确性为纵坐标 plt.plot(epochs,val_acc, 'b' ,label = 'Vaildation acc' ) #以epochs为横坐标,以验证集准确性为纵坐标 plt.legend() #绘制图例,即标明图中的线段代表何种含义 plt.figure() #创建一个新的图表 plt.plot(epochs,loss, 'bo' ,label = 'Trainning loss' ) plt.plot(epochs,val_loss, 'b' ,label = 'Vaildation loss' ) plt.legend() ##绘制图例,即标明图中的线段代表何种含义 |
以上这篇使用Keras画神经网络准确性图教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/u014453898/article/details/89222503