其实很简单
1
2
3
4
|
from keras.models import load_model base_model = load_model( 'model_resenet.h5' ) #加载指定的模型 print (base_model.summary()) #输出网络的结构图 |
这是我的网络模型的输出,其实就是它的结构图
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
|
__________________________________________________________________________________________________ Layer ( type ) Output Shape Param # Connected to = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = input_1 (InputLayer) ( None , 227 , 227 , 1 ) 0 __________________________________________________________________________________________________ conv2d_1 (Conv2D) ( None , 225 , 225 , 32 ) 320 input_1[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_1 (BatchNor ( None , 225 , 225 , 32 ) 128 conv2d_1[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_1 (Activation) ( None , 225 , 225 , 32 ) 0 batch_normalization_1[ 0 ][ 0 ] __________________________________________________________________________________________________ conv2d_2 (Conv2D) ( None , 225 , 225 , 32 ) 9248 activation_1[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_2 (BatchNor ( None , 225 , 225 , 32 ) 128 conv2d_2[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_2 (Activation) ( None , 225 , 225 , 32 ) 0 batch_normalization_2[ 0 ][ 0 ] __________________________________________________________________________________________________ conv2d_3 (Conv2D) ( None , 225 , 225 , 32 ) 9248 activation_2[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_3 (BatchNor ( None , 225 , 225 , 32 ) 128 conv2d_3[ 0 ][ 0 ] __________________________________________________________________________________________________ merge_1 (Merge) ( None , 225 , 225 , 32 ) 0 batch_normalization_3[ 0 ][ 0 ] activation_1[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_3 (Activation) ( None , 225 , 225 , 32 ) 0 merge_1[ 0 ][ 0 ] __________________________________________________________________________________________________ conv2d_4 (Conv2D) ( None , 225 , 225 , 32 ) 9248 activation_3[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_4 (BatchNor ( None , 225 , 225 , 32 ) 128 conv2d_4[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_4 (Activation) ( None , 225 , 225 , 32 ) 0 batch_normalization_4[ 0 ][ 0 ] __________________________________________________________________________________________________ conv2d_5 (Conv2D) ( None , 225 , 225 , 32 ) 9248 activation_4[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_5 (BatchNor ( None , 225 , 225 , 32 ) 128 conv2d_5[ 0 ][ 0 ] __________________________________________________________________________________________________ merge_2 (Merge) ( None , 225 , 225 , 32 ) 0 batch_normalization_5[ 0 ][ 0 ] activation_3[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_5 (Activation) ( None , 225 , 225 , 32 ) 0 merge_2[ 0 ][ 0 ] __________________________________________________________________________________________________ max_pooling2d_1 (MaxPooling2D) ( None , 112 , 112 , 32 ) 0 activation_5[ 0 ][ 0 ] __________________________________________________________________________________________________ conv2d_6 (Conv2D) ( None , 110 , 110 , 64 ) 18496 max_pooling2d_1[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_6 (BatchNor ( None , 110 , 110 , 64 ) 256 conv2d_6[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_6 (Activation) ( None , 110 , 110 , 64 ) 0 batch_normalization_6[ 0 ][ 0 ] __________________________________________________________________________________________________ conv2d_7 (Conv2D) ( None , 110 , 110 , 64 ) 36928 activation_6[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_7 (BatchNor ( None , 110 , 110 , 64 ) 256 conv2d_7[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_7 (Activation) ( None , 110 , 110 , 64 ) 0 batch_normalization_7[ 0 ][ 0 ] __________________________________________________________________________________________________ conv2d_8 (Conv2D) ( None , 110 , 110 , 64 ) 36928 activation_7[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_8 (BatchNor ( None , 110 , 110 , 64 ) 256 conv2d_8[ 0 ][ 0 ] __________________________________________________________________________________________________ merge_3 (Merge) ( None , 110 , 110 , 64 ) 0 batch_normalization_8[ 0 ][ 0 ] activation_6[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_8 (Activation) ( None , 110 , 110 , 64 ) 0 merge_3[ 0 ][ 0 ] __________________________________________________________________________________________________ conv2d_9 (Conv2D) ( None , 110 , 110 , 64 ) 36928 activation_8[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_9 (BatchNor ( None , 110 , 110 , 64 ) 256 conv2d_9[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_9 (Activation) ( None , 110 , 110 , 64 ) 0 batch_normalization_9[ 0 ][ 0 ] __________________________________________________________________________________________________ conv2d_10 (Conv2D) ( None , 110 , 110 , 64 ) 36928 activation_9[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_10 (BatchNo ( None , 110 , 110 , 64 ) 256 conv2d_10[ 0 ][ 0 ] __________________________________________________________________________________________________ merge_4 (Merge) ( None , 110 , 110 , 64 ) 0 batch_normalization_10[ 0 ][ 0 ] activation_8[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_10 (Activation) ( None , 110 , 110 , 64 ) 0 merge_4[ 0 ][ 0 ] __________________________________________________________________________________________________ max_pooling2d_2 (MaxPooling2D) ( None , 55 , 55 , 64 ) 0 activation_10[ 0 ][ 0 ] __________________________________________________________________________________________________ conv2d_11 (Conv2D) ( None , 53 , 53 , 64 ) 36928 max_pooling2d_2[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_11 (BatchNo ( None , 53 , 53 , 64 ) 256 conv2d_11[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_11 (Activation) ( None , 53 , 53 , 64 ) 0 batch_normalization_11[ 0 ][ 0 ] __________________________________________________________________________________________________ max_pooling2d_3 (MaxPooling2D) ( None , 26 , 26 , 64 ) 0 activation_11[ 0 ][ 0 ] __________________________________________________________________________________________________ conv2d_12 (Conv2D) ( None , 26 , 26 , 64 ) 36928 max_pooling2d_3[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_12 (BatchNo ( None , 26 , 26 , 64 ) 256 conv2d_12[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_12 (Activation) ( None , 26 , 26 , 64 ) 0 batch_normalization_12[ 0 ][ 0 ] __________________________________________________________________________________________________ conv2d_13 (Conv2D) ( None , 26 , 26 , 64 ) 36928 activation_12[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_13 (BatchNo ( None , 26 , 26 , 64 ) 256 conv2d_13[ 0 ][ 0 ] __________________________________________________________________________________________________ merge_5 (Merge) ( None , 26 , 26 , 64 ) 0 batch_normalization_13[ 0 ][ 0 ] max_pooling2d_3[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_13 (Activation) ( None , 26 , 26 , 64 ) 0 merge_5[ 0 ][ 0 ] __________________________________________________________________________________________________ conv2d_14 (Conv2D) ( None , 26 , 26 , 64 ) 36928 activation_13[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_14 (BatchNo ( None , 26 , 26 , 64 ) 256 conv2d_14[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_14 (Activation) ( None , 26 , 26 , 64 ) 0 batch_normalization_14[ 0 ][ 0 ] __________________________________________________________________________________________________ conv2d_15 (Conv2D) ( None , 26 , 26 , 64 ) 36928 activation_14[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_15 (BatchNo ( None , 26 , 26 , 64 ) 256 conv2d_15[ 0 ][ 0 ] __________________________________________________________________________________________________ merge_6 (Merge) ( None , 26 , 26 , 64 ) 0 batch_normalization_15[ 0 ][ 0 ] activation_13[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_15 (Activation) ( None , 26 , 26 , 64 ) 0 merge_6[ 0 ][ 0 ] __________________________________________________________________________________________________ max_pooling2d_4 (MaxPooling2D) ( None , 13 , 13 , 64 ) 0 activation_15[ 0 ][ 0 ] __________________________________________________________________________________________________ conv2d_16 (Conv2D) ( None , 11 , 11 , 32 ) 18464 max_pooling2d_4[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_16 (BatchNo ( None , 11 , 11 , 32 ) 128 conv2d_16[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_16 (Activation) ( None , 11 , 11 , 32 ) 0 batch_normalization_16[ 0 ][ 0 ] __________________________________________________________________________________________________ conv2d_17 (Conv2D) ( None , 11 , 11 , 32 ) 9248 activation_16[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_17 (BatchNo ( None , 11 , 11 , 32 ) 128 conv2d_17[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_17 (Activation) ( None , 11 , 11 , 32 ) 0 batch_normalization_17[ 0 ][ 0 ] __________________________________________________________________________________________________ conv2d_18 (Conv2D) ( None , 11 , 11 , 32 ) 9248 activation_17[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_18 (BatchNo ( None , 11 , 11 , 32 ) 128 conv2d_18[ 0 ][ 0 ] __________________________________________________________________________________________________ merge_7 (Merge) ( None , 11 , 11 , 32 ) 0 batch_normalization_18[ 0 ][ 0 ] activation_16[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_18 (Activation) ( None , 11 , 11 , 32 ) 0 merge_7[ 0 ][ 0 ] __________________________________________________________________________________________________ conv2d_19 (Conv2D) ( None , 11 , 11 , 32 ) 9248 activation_18[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_19 (BatchNo ( None , 11 , 11 , 32 ) 128 conv2d_19[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_19 (Activation) ( None , 11 , 11 , 32 ) 0 batch_normalization_19[ 0 ][ 0 ] __________________________________________________________________________________________________ conv2d_20 (Conv2D) ( None , 11 , 11 , 32 ) 9248 activation_19[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_20 (BatchNo ( None , 11 , 11 , 32 ) 128 conv2d_20[ 0 ][ 0 ] __________________________________________________________________________________________________ merge_8 (Merge) ( None , 11 , 11 , 32 ) 0 batch_normalization_20[ 0 ][ 0 ] activation_18[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_20 (Activation) ( None , 11 , 11 , 32 ) 0 merge_8[ 0 ][ 0 ] __________________________________________________________________________________________________ max_pooling2d_5 (MaxPooling2D) ( None , 5 , 5 , 32 ) 0 activation_20[ 0 ][ 0 ] __________________________________________________________________________________________________ conv2d_21 (Conv2D) ( None , 3 , 3 , 64 ) 18496 max_pooling2d_5[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_21 (BatchNo ( None , 3 , 3 , 64 ) 256 conv2d_21[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_21 (Activation) ( None , 3 , 3 , 64 ) 0 batch_normalization_21[ 0 ][ 0 ] __________________________________________________________________________________________________ conv2d_22 (Conv2D) ( None , 3 , 3 , 64 ) 36928 activation_21[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_22 (BatchNo ( None , 3 , 3 , 64 ) 256 conv2d_22[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_22 (Activation) ( None , 3 , 3 , 64 ) 0 batch_normalization_22[ 0 ][ 0 ] __________________________________________________________________________________________________ conv2d_23 (Conv2D) ( None , 3 , 3 , 64 ) 36928 activation_22[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_23 (BatchNo ( None , 3 , 3 , 64 ) 256 conv2d_23[ 0 ][ 0 ] __________________________________________________________________________________________________ merge_9 (Merge) ( None , 3 , 3 , 64 ) 0 batch_normalization_23[ 0 ][ 0 ] activation_21[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_23 (Activation) ( None , 3 , 3 , 64 ) 0 merge_9[ 0 ][ 0 ] __________________________________________________________________________________________________ conv2d_24 (Conv2D) ( None , 3 , 3 , 64 ) 36928 activation_23[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_24 (BatchNo ( None , 3 , 3 , 64 ) 256 conv2d_24[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_24 (Activation) ( None , 3 , 3 , 64 ) 0 batch_normalization_24[ 0 ][ 0 ] __________________________________________________________________________________________________ conv2d_25 (Conv2D) ( None , 3 , 3 , 64 ) 36928 activation_24[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_25 (BatchNo ( None , 3 , 3 , 64 ) 256 conv2d_25[ 0 ][ 0 ] __________________________________________________________________________________________________ merge_10 (Merge) ( None , 3 , 3 , 64 ) 0 batch_normalization_25[ 0 ][ 0 ] activation_23[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_25 (Activation) ( None , 3 , 3 , 64 ) 0 merge_10[ 0 ][ 0 ] __________________________________________________________________________________________________ max_pooling2d_6 (MaxPooling2D) ( None , 1 , 1 , 64 ) 0 activation_25[ 0 ][ 0 ] __________________________________________________________________________________________________ flatten_1 (Flatten) ( None , 64 ) 0 max_pooling2d_6[ 0 ][ 0 ] __________________________________________________________________________________________________ dense_1 (Dense) ( None , 256 ) 16640 flatten_1[ 0 ][ 0 ] __________________________________________________________________________________________________ dropout_1 (Dropout) ( None , 256 ) 0 dense_1[ 0 ][ 0 ] __________________________________________________________________________________________________ dense_2 (Dense) ( None , 2 ) 514 dropout_1[ 0 ][ 0 ] = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = Total params: 632 , 098 Trainable params: 629 , 538 Non - trainable params: 2 , 560 __________________________________________________________________________________________________ |
去掉模型的全连接层
1
2
3
4
5
6
|
from keras.models import load_model base_model = load_model( 'model_resenet.h5' ) resnet_model = Model(inputs = base_model. input , outputs = base_model.get_layer( 'max_pooling2d_6' ).output) #'max_pooling2d_6'其实就是上述网络中全连接层的前面一层,当然这里你也可以选取其它层,把该层的名称代替'max_pooling2d_6'即可,这样其实就是截取网络,输出网络结构就是方便读取每层的名字。 print (resnet_model.summary()) |
新输出的网络结构:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
|
__________________________________________________________________________________________________ Layer ( type ) Output Shape Param # Connected to = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = input_1 (InputLayer) ( None , 227 , 227 , 1 ) 0 __________________________________________________________________________________________________ conv2d_1 (Conv2D) ( None , 225 , 225 , 32 ) 320 input_1[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_1 (BatchNor ( None , 225 , 225 , 32 ) 128 conv2d_1[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_1 (Activation) ( None , 225 , 225 , 32 ) 0 batch_normalization_1[ 0 ][ 0 ] __________________________________________________________________________________________________ conv2d_2 (Conv2D) ( None , 225 , 225 , 32 ) 9248 activation_1[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_2 (BatchNor ( None , 225 , 225 , 32 ) 128 conv2d_2[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_2 (Activation) ( None , 225 , 225 , 32 ) 0 batch_normalization_2[ 0 ][ 0 ] __________________________________________________________________________________________________ conv2d_3 (Conv2D) ( None , 225 , 225 , 32 ) 9248 activation_2[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_3 (BatchNor ( None , 225 , 225 , 32 ) 128 conv2d_3[ 0 ][ 0 ] __________________________________________________________________________________________________ merge_1 (Merge) ( None , 225 , 225 , 32 ) 0 batch_normalization_3[ 0 ][ 0 ] activation_1[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_3 (Activation) ( None , 225 , 225 , 32 ) 0 merge_1[ 0 ][ 0 ] __________________________________________________________________________________________________ conv2d_4 (Conv2D) ( None , 225 , 225 , 32 ) 9248 activation_3[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_4 (BatchNor ( None , 225 , 225 , 32 ) 128 conv2d_4[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_4 (Activation) ( None , 225 , 225 , 32 ) 0 batch_normalization_4[ 0 ][ 0 ] __________________________________________________________________________________________________ conv2d_5 (Conv2D) ( None , 225 , 225 , 32 ) 9248 activation_4[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_5 (BatchNor ( None , 225 , 225 , 32 ) 128 conv2d_5[ 0 ][ 0 ] __________________________________________________________________________________________________ merge_2 (Merge) ( None , 225 , 225 , 32 ) 0 batch_normalization_5[ 0 ][ 0 ] activation_3[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_5 (Activation) ( None , 225 , 225 , 32 ) 0 merge_2[ 0 ][ 0 ] __________________________________________________________________________________________________ max_pooling2d_1 (MaxPooling2D) ( None , 112 , 112 , 32 ) 0 activation_5[ 0 ][ 0 ] __________________________________________________________________________________________________ conv2d_6 (Conv2D) ( None , 110 , 110 , 64 ) 18496 max_pooling2d_1[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_6 (BatchNor ( None , 110 , 110 , 64 ) 256 conv2d_6[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_6 (Activation) ( None , 110 , 110 , 64 ) 0 batch_normalization_6[ 0 ][ 0 ] __________________________________________________________________________________________________ conv2d_7 (Conv2D) ( None , 110 , 110 , 64 ) 36928 activation_6[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_7 (BatchNor ( None , 110 , 110 , 64 ) 256 conv2d_7[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_7 (Activation) ( None , 110 , 110 , 64 ) 0 batch_normalization_7[ 0 ][ 0 ] __________________________________________________________________________________________________ conv2d_8 (Conv2D) ( None , 110 , 110 , 64 ) 36928 activation_7[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_8 (BatchNor ( None , 110 , 110 , 64 ) 256 conv2d_8[ 0 ][ 0 ] __________________________________________________________________________________________________ merge_3 (Merge) ( None , 110 , 110 , 64 ) 0 batch_normalization_8[ 0 ][ 0 ] activation_6[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_8 (Activation) ( None , 110 , 110 , 64 ) 0 merge_3[ 0 ][ 0 ] __________________________________________________________________________________________________ conv2d_9 (Conv2D) ( None , 110 , 110 , 64 ) 36928 activation_8[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_9 (BatchNor ( None , 110 , 110 , 64 ) 256 conv2d_9[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_9 (Activation) ( None , 110 , 110 , 64 ) 0 batch_normalization_9[ 0 ][ 0 ] __________________________________________________________________________________________________ conv2d_10 (Conv2D) ( None , 110 , 110 , 64 ) 36928 activation_9[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_10 (BatchNo ( None , 110 , 110 , 64 ) 256 conv2d_10[ 0 ][ 0 ] __________________________________________________________________________________________________ merge_4 (Merge) ( None , 110 , 110 , 64 ) 0 batch_normalization_10[ 0 ][ 0 ] activation_8[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_10 (Activation) ( None , 110 , 110 , 64 ) 0 merge_4[ 0 ][ 0 ] __________________________________________________________________________________________________ max_pooling2d_2 (MaxPooling2D) ( None , 55 , 55 , 64 ) 0 activation_10[ 0 ][ 0 ] __________________________________________________________________________________________________ conv2d_11 (Conv2D) ( None , 53 , 53 , 64 ) 36928 max_pooling2d_2[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_11 (BatchNo ( None , 53 , 53 , 64 ) 256 conv2d_11[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_11 (Activation) ( None , 53 , 53 , 64 ) 0 batch_normalization_11[ 0 ][ 0 ] __________________________________________________________________________________________________ max_pooling2d_3 (MaxPooling2D) ( None , 26 , 26 , 64 ) 0 activation_11[ 0 ][ 0 ] __________________________________________________________________________________________________ conv2d_12 (Conv2D) ( None , 26 , 26 , 64 ) 36928 max_pooling2d_3[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_12 (BatchNo ( None , 26 , 26 , 64 ) 256 conv2d_12[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_12 (Activation) ( None , 26 , 26 , 64 ) 0 batch_normalization_12[ 0 ][ 0 ] __________________________________________________________________________________________________ conv2d_13 (Conv2D) ( None , 26 , 26 , 64 ) 36928 activation_12[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_13 (BatchNo ( None , 26 , 26 , 64 ) 256 conv2d_13[ 0 ][ 0 ] __________________________________________________________________________________________________ merge_5 (Merge) ( None , 26 , 26 , 64 ) 0 batch_normalization_13[ 0 ][ 0 ] max_pooling2d_3[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_13 (Activation) ( None , 26 , 26 , 64 ) 0 merge_5[ 0 ][ 0 ] __________________________________________________________________________________________________ conv2d_14 (Conv2D) ( None , 26 , 26 , 64 ) 36928 activation_13[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_14 (BatchNo ( None , 26 , 26 , 64 ) 256 conv2d_14[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_14 (Activation) ( None , 26 , 26 , 64 ) 0 batch_normalization_14[ 0 ][ 0 ] __________________________________________________________________________________________________ conv2d_15 (Conv2D) ( None , 26 , 26 , 64 ) 36928 activation_14[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_15 (BatchNo ( None , 26 , 26 , 64 ) 256 conv2d_15[ 0 ][ 0 ] __________________________________________________________________________________________________ merge_6 (Merge) ( None , 26 , 26 , 64 ) 0 batch_normalization_15[ 0 ][ 0 ] activation_13[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_15 (Activation) ( None , 26 , 26 , 64 ) 0 merge_6[ 0 ][ 0 ] __________________________________________________________________________________________________ max_pooling2d_4 (MaxPooling2D) ( None , 13 , 13 , 64 ) 0 activation_15[ 0 ][ 0 ] __________________________________________________________________________________________________ conv2d_16 (Conv2D) ( None , 11 , 11 , 32 ) 18464 max_pooling2d_4[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_16 (BatchNo ( None , 11 , 11 , 32 ) 128 conv2d_16[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_16 (Activation) ( None , 11 , 11 , 32 ) 0 batch_normalization_16[ 0 ][ 0 ] __________________________________________________________________________________________________ conv2d_17 (Conv2D) ( None , 11 , 11 , 32 ) 9248 activation_16[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_17 (BatchNo ( None , 11 , 11 , 32 ) 128 conv2d_17[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_17 (Activation) ( None , 11 , 11 , 32 ) 0 batch_normalization_17[ 0 ][ 0 ] __________________________________________________________________________________________________ conv2d_18 (Conv2D) ( None , 11 , 11 , 32 ) 9248 activation_17[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_18 (BatchNo ( None , 11 , 11 , 32 ) 128 conv2d_18[ 0 ][ 0 ] __________________________________________________________________________________________________ merge_7 (Merge) ( None , 11 , 11 , 32 ) 0 batch_normalization_18[ 0 ][ 0 ] activation_16[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_18 (Activation) ( None , 11 , 11 , 32 ) 0 merge_7[ 0 ][ 0 ] __________________________________________________________________________________________________ conv2d_19 (Conv2D) ( None , 11 , 11 , 32 ) 9248 activation_18[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_19 (BatchNo ( None , 11 , 11 , 32 ) 128 conv2d_19[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_19 (Activation) ( None , 11 , 11 , 32 ) 0 batch_normalization_19[ 0 ][ 0 ] __________________________________________________________________________________________________ conv2d_20 (Conv2D) ( None , 11 , 11 , 32 ) 9248 activation_19[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_20 (BatchNo ( None , 11 , 11 , 32 ) 128 conv2d_20[ 0 ][ 0 ] __________________________________________________________________________________________________ merge_8 (Merge) ( None , 11 , 11 , 32 ) 0 batch_normalization_20[ 0 ][ 0 ] activation_18[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_20 (Activation) ( None , 11 , 11 , 32 ) 0 merge_8[ 0 ][ 0 ] __________________________________________________________________________________________________ max_pooling2d_5 (MaxPooling2D) ( None , 5 , 5 , 32 ) 0 activation_20[ 0 ][ 0 ] __________________________________________________________________________________________________ conv2d_21 (Conv2D) ( None , 3 , 3 , 64 ) 18496 max_pooling2d_5[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_21 (BatchNo ( None , 3 , 3 , 64 ) 256 conv2d_21[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_21 (Activation) ( None , 3 , 3 , 64 ) 0 batch_normalization_21[ 0 ][ 0 ] __________________________________________________________________________________________________ conv2d_22 (Conv2D) ( None , 3 , 3 , 64 ) 36928 activation_21[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_22 (BatchNo ( None , 3 , 3 , 64 ) 256 conv2d_22[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_22 (Activation) ( None , 3 , 3 , 64 ) 0 batch_normalization_22[ 0 ][ 0 ] __________________________________________________________________________________________________ conv2d_23 (Conv2D) ( None , 3 , 3 , 64 ) 36928 activation_22[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_23 (BatchNo ( None , 3 , 3 , 64 ) 256 conv2d_23[ 0 ][ 0 ] __________________________________________________________________________________________________ merge_9 (Merge) ( None , 3 , 3 , 64 ) 0 batch_normalization_23[ 0 ][ 0 ] activation_21[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_23 (Activation) ( None , 3 , 3 , 64 ) 0 merge_9[ 0 ][ 0 ] __________________________________________________________________________________________________ conv2d_24 (Conv2D) ( None , 3 , 3 , 64 ) 36928 activation_23[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_24 (BatchNo ( None , 3 , 3 , 64 ) 256 conv2d_24[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_24 (Activation) ( None , 3 , 3 , 64 ) 0 batch_normalization_24[ 0 ][ 0 ] __________________________________________________________________________________________________ conv2d_25 (Conv2D) ( None , 3 , 3 , 64 ) 36928 activation_24[ 0 ][ 0 ] __________________________________________________________________________________________________ batch_normalization_25 (BatchNo ( None , 3 , 3 , 64 ) 256 conv2d_25[ 0 ][ 0 ] __________________________________________________________________________________________________ merge_10 (Merge) ( None , 3 , 3 , 64 ) 0 batch_normalization_25[ 0 ][ 0 ] activation_23[ 0 ][ 0 ] __________________________________________________________________________________________________ activation_25 (Activation) ( None , 3 , 3 , 64 ) 0 merge_10[ 0 ][ 0 ] __________________________________________________________________________________________________ max_pooling2d_6 (MaxPooling2D) ( None , 1 , 1 , 64 ) 0 activation_25[ 0 ][ 0 ] = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = Total params: 614 , 944 Trainable params: 612 , 384 Non - trainable params: 2 , 560 __________________________________________________________________________________________________ |
以上这篇keras实现调用自己训练的模型,并去掉全连接层就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/qq_29462849/article/details/83010854