脚本之家,脚本语言编程技术及教程分享平台!
分类导航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服务器之家 - 脚本之家 - Python - pandas dataframe 中的explode函数用法详解

pandas dataframe 中的explode函数用法详解

2020-05-19 09:57Sinsa_SI Python

这篇文章主要介绍了pandas dataframe 中的explode函数用法详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

在使用 pandas 进行数据分析的过程中,我们常常会遇到将一行数据展开成多行的需求,多么希望能有一个类似于 hive sql 中的 explode 函数。

这个函数如下:

Code

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# !/usr/bin/env python
# -*- coding:utf-8 -*-
# create on 18/4/13
import pandas as pd
 
def dataframe_explode(dataframe, fieldname):
 temp_fieldname = fieldname + '_made_tuple_'
 dataframe[temp_fieldname] = dataframe[fieldname].apply(tuple
 list_of_dataframes = []
 for values in dataframe[temp_fieldname].unique().tolist():
  list_of_dataframes.append(pd.DataFrame({
   temp_fieldname: [values] * len(values),
   fieldname: list(values),
  }))
 dataframe = dataframe[list(set(dataframe.columns) - set([fieldname]))].merge(pd.concat(list_of_dataframes), how='left', on=temp_fieldname)
 del dataframe[temp_fieldname]
 return dataframe
 
df = pd.DataFrame({'listcol':[[1,2,3],[4,5,6]], "aa": [222,333]})
df = dataframe_explode(df, "listcol")

Description

将 dataframe 按照某一指定列进行展开,使得原来的每一行展开成一行或多行。( 注:该列可迭代, 例如list, tuple, set)

补充知识:Pandas列中的字典/列表拆分为单独的列

我就废话不多说了,大家还是直接看代码吧

?
1
2
3
4
5
6
7
[1] df
Station ID  Pollutants
8809   {"a": "46", "b": "3", "c": "12"}
8810   {"a": "36", "b": "5", "c": "8"}
8811   {"b": "2", "c": "7"}
8812   {"c": "11"}
8813   {"a": "82", "c": "15"}

Method 1:

step 1: convert the Pollutants column to Pandas dataframe series

?
1
2
3
4
5
6
7
8
9
df_pol_ps = data_df['Pollutants'].apply(pd.Series)
 
df_pol_ps:
 a b c
0 46 3 12
1 36 5 8
2 NaN 2 7
3 NaN NaN 11
4 82 NaN 15

step 2: concat columns a, b, c and drop/remove the Pollutants

?
1
2
3
4
5
6
7
8
9
df_final = pd.concat([df, df_pol_ps], axis = 1).drop('Pollutants', axis = 1)
 
df_final:
 StationID a b c
0 8809 46 3 12
1 8810 36 5 8
2 8811 NaN 2 7
3 8812 NaN NaN 11
4 8813 82 NaN 15

Method 2:

?
1
2
3
4
5
6
7
8
9
df_final = pd.concat([df, df['Pollutants'].apply(pd.Series)], axis = 1).drop('Pollutants', axis = 1)
 
df_final:
 StationID a b c
0 8809 46 3 12
1 8810 36 5 8
2 8811 NaN 2 7
3 8812 NaN NaN 11
4 8813 82 NaN 15

以上这篇pandas dataframe 中的explode函数用法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。

原文链接:https://blog.csdn.net/Sinsa110/article/details/85260302

延伸 · 阅读

精彩推荐