脚本之家,脚本语言编程技术及教程分享平台!
分类导航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服务器之家 - 脚本之家 - Python - pytorch之ImageFolder使用详解

pytorch之ImageFolder使用详解

2020-05-07 10:37朴素.无恙 Python

今天小编就为大家分享一篇pytorch之ImageFolder使用详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

pytorch之ImageFolder

torchvision已经预先实现了常用的Dataset,包括前面使用过的CIFAR-10,以及ImageNet、COCO、MNIST、LSUN等数据集,可通过诸如torchvision.datasets.CIFAR10来调用。在这里介绍一个会经常使用到的Dataset——ImageFolder。

ImageFolder假设所有的文件按文件夹保存,每个文件夹下存储同一个类别的图片,文件夹名为类名,其构造函数如下:

?
1
ImageFolder(root, transform=None, target_transform=None, loader=default_loader)

它主要有四个参数:

root:在root指定的路径下寻找图片

transform:对PIL Image进行的转换操作,transform的输入是使用loader读取图片的返回对象

target_transform:对label的转换

loader:给定路径后如何读取图片,默认读取为RGB格式的PIL Image对象

label是按照文件夹名顺序排序后存成字典,即{类名:类序号(从0开始)},一般来说最好直接将文件夹命名为从0开始的数字,这样会和ImageFolder实际的label一致,如果不是这种命名规范,建议看看self.class_to_idx属性以了解label和文件夹名的映射关系。

图片结构如下所示:

pytorch之ImageFolder使用详解
?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
from torchvision import transforms as T
import matplotlib.pyplot as plt
from torchvision.datasets import ImageFolder
 
 
dataset = ImageFolder('data/dogcat_2/')
 
# cat文件夹的图片对应label 0,dog对应1
print(dataset.class_to_idx)
 
# 所有图片的路径和对应的label
print(dataset.imgs)
 
# 没有任何的transform,所以返回的还是PIL Image对象
#print(dataset[0][1])# 第一维是第几张图,第二维为1返回label
#print(dataset[0][0]) # 为0返回图片数据
plt.imshow(dataset[0][0])
plt.axis('off')
plt.show()

加上transform

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
normalize = T.Normalize(mean=[0.4, 0.4, 0.4], std=[0.2, 0.2, 0.2])
transform = T.Compose([
     T.RandomResizedCrop(224),
     T.RandomHorizontalFlip(),
     T.ToTensor(),
     normalize,
])
dataset = ImageFolder('data1/dogcat_2/', transform=transform)
 
# 深度学习中图片数据一般保存成CxHxW,即通道数x图片高x图片宽
#print(dataset[0][0].size())
 
to_img = T.ToPILImage()
# 0.2和0.4是标准差和均值的近似
a=to_img(dataset[0][0]*0.2+0.4)
plt.imshow(a)
plt.axis('off')
plt.show()

以上这篇pytorch之ImageFolder使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。

原文链接:https://blog.csdn.net/weixin_40123108/article/details/85099449

延伸 · 阅读

精彩推荐