group by date 聚合查询日期 统计每天数据(信息量)
1
1
2
3
4
5
|
{ "_id" : ObjectId("557ac1e2153c43c320393d9d"), "msgType" : "text", "sendTime" : ISODate("2015-06-12T11:26:26.000Z") } |
2
1
2
3
4
5
|
{ "_id" : ObjectId("557ac1ee153c43c320393d9e"), "msgType" : "text", "sendTime" : ISODate("2015-06-12T11:26:38.000Z") } |
3
1
2
3
4
5
|
{ "_id" : ObjectId("557ac2012de5d32d213963b5"), "msgType" : "text", "sendTime" : ISODate("2015-06-12T11:26:56.000Z") } |
4
1
2
3
4
5
|
{ "_id" : ObjectId("557ac978bb31196e21d23868"), "msgType" : "text", "sendTime" : ISODate("2015-06-12T11:58:47.000Z") } |
5
1
2
3
4
5
|
{ "_id" : ObjectId("557ac9afbb31196e21d23869"), "msgType" : "text", "sendTime" : ISODate("2015-06-12T11:59:43.000Z") } |
SQL Here
1
2
3
4
5
6
7
|
db.getCollection( 'wechat_message' ).aggregate( [ { $project : { day : {$substr: [ "$sendTime" , 0, 10] }}}, { $ group : { _id : "$day" , number : { $ sum : 1 }}}, { $sort : { _id : -1 }} ] ) |
Result Here
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
"result" : [ { "_id" : "2015-07-06" , "number" : 13.0000000000000000 }, { "_id" : "2015-07-05" , "number" : 3.0000000000000000 }, { "_id" : "2015-07-03" , "number" : 10.0000000000000000 }, { "_id" : "2015-07-02" , "number" : 29.0000000000000000 }, ] |
查询某一天所有信息的3种方法,根据日期查询
mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
第一种方式:
1
2
3
4
|
coll.aggregate([ {$project:{sendDate: {$substr: [ '$sendTime' , 0, 10]}, sendTime: 1, content:1}}, {$match:{sendDate: '2015-07-05' }}, ]) |
第二种方式(第一种的变异):
1
2
|
coll.aggregate([ {$match: { 'sendTime' : { '$gte' : new Date( '2015-07-05' ), '$lt' : new Date( '2015-07-06' )}}} |
第三中方式(第二种的变异):
1
2
|
coll.aggregate([ {$match: { 'sendTime' : { '$gte' : new Date( '2015-07-05 00:00:00' ), '$lte' : new Date( '2015-07-05 23:59:59' )}}} |
查询结果如下(展示一种方式:其他展示略有不同):
1
2
3
|
[ { _id: 5599b09bc16aac90e9fb7995, sendDate: '2015-07-05' }, { _id: 5599b161c16aac90e9fb7996, sendDate: '2015-07-05' }, { _id: 5599b161c16aac90e9fb7997, sendDate: '2015-07-05' } ] |