举例说明
TensorFlow中的变量一般就是模型的参数。当模型复杂的时候共享变量会无比复杂。
官网给了一个case,当创建两层卷积的过滤器时,每输入一次图片就会创建一次过滤器对应的变量,但是我们希望所有图片都共享同一过滤器变量,一共有4个变量:conv1_weights,conv1_biases,conv2_weights, and conv2_biases。
通常的做法是将这些变量设置为全局变量。但是存在的问题是打破封装性,这些变量必须文档化被其他代码文件引用,一旦代码变化,调用方也可能需要变化。
还有一种保证封装性的方式是将模型封装成类。
不过TensorFlow提供了Variable Scope 这种独特的机制来共享变量。这个机制涉及两个主要函数:
1
2
|
tf.get_variable(<name>, <shape>, <initializer>) 创建或返回给定名称的变量 tf.variable_scope(<scope_name>) 管理传给get_variable()的变量名称的作用域 |
在下面的代码中,通过tf.get_variable()创建了名称分别为weights和biases的两个变量。
1
2
3
4
5
6
7
8
9
10
|
def conv_relu( input , kernel_shape, bias_shape): # Create variable named "weights". weights = tf.get_variable( "weights" , kernel_shape, initializer = tf.random_normal_initializer()) # Create variable named "biases". biases = tf.get_variable( "biases" , bias_shape, initializer = tf.constant_initializer( 0.0 )) conv = tf.nn.conv2d( input , weights, strides = [ 1 , 1 , 1 , 1 ], padding = 'SAME' ) return tf.nn.relu(conv + biases) |
但是我们需要两个卷积层,这时可以通过tf.variable_scope()指定作用域进行区分,如with tf.variable_scope("conv1")这行代码指定了第一个卷积层作用域为conv1,
在这个作用域下有两个变量weights和biases。
1
2
3
4
5
6
7
|
def my_image_filter(input_images): with tf.variable_scope( "conv1" ): # Variables created here will be named "conv1/weights", "conv1/biases". relu1 = conv_relu(input_images, [ 5 , 5 , 32 , 32 ], [ 32 ]) with tf.variable_scope( "conv2" ): # Variables created here will be named "conv2/weights", "conv2/biases". return conv_relu(relu1, [ 5 , 5 , 32 , 32 ], [ 32 ]) |
最后在image_filters这个作用域重复使用第一张图片输入时创建的变量,调用函数reuse_variables(),代码如下:
1
2
3
4
|
with tf.variable_scope( "image_filters" ) as scope: result1 = my_image_filter(image1) scope.reuse_variables() result2 = my_image_filter(image2) |
tf.get_variable()工作机制
tf.get_variable()工作机制是这样的:
当tf.get_variable_scope().reuse == False,调用该函数会创建新的变量
1
2
3
|
with tf.variable_scope( "foo" ): v = tf.get_variable( "v" , [ 1 ]) assert v.name = = "foo/v:0" |
当tf.get_variable_scope().reuse == True,调用该函数会重用已经创建的变量
1
2
3
4
5
|
with tf.variable_scope( "foo" ): v = tf.get_variable( "v" , [ 1 ]) with tf.variable_scope( "foo" , reuse = True ): v1 = tf.get_variable( "v" , [ 1 ]) assert v1 is v |
变量都是通过作用域/变量名来标识,后面会看到作用域可以像文件路径一样嵌套。
tf.variable_scope理解
tf.variable_scope()用来指定变量的作用域,作为变量名的前缀,支持嵌套,如下:
1
2
3
4
|
with tf.variable_scope( "foo" ): with tf.variable_scope( "bar" ): v = tf.get_variable( "v" , [ 1 ]) assert v.name = = "foo/bar/v:0" |
当前环境的作用域可以通过函数tf.get_variable_scope()获取,并且reuse标志可以通过调用reuse_variables()设置为True,这个非常有用,如下
1
2
3
4
5
|
with tf.variable_scope( "foo" ): v = tf.get_variable( "v" , [ 1 ]) tf.get_variable_scope().reuse_variables() v1 = tf.get_variable( "v" , [ 1 ]) assert v1 is v |
作用域中的resuse默认是False,调用函数reuse_variables()可设置为True,一旦设置为True,就不能返回到False,并且该作用域的子空间reuse都是True。如果不想重用变量,那么可以退回到上层作用域,相当于exit当前作用域,如
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
with tf.variable_scope( "root" ): # At start, the scope is not reusing. assert tf.get_variable_scope().reuse = = False with tf.variable_scope( "foo" ): # Opened a sub-scope, still not reusing. assert tf.get_variable_scope().reuse = = False with tf.variable_scope( "foo" , reuse = True ): # Explicitly opened a reusing scope. assert tf.get_variable_scope().reuse = = True with tf.variable_scope( "bar" ): # Now sub-scope inherits the reuse flag. assert tf.get_variable_scope().reuse = = True # Exited the reusing scope, back to a non-reusing one. assert tf.get_variable_scope().reuse = = False |
一个作用域可以作为另一个新的作用域的参数,如:
1
2
3
4
5
6
7
8
9
|
with tf.variable_scope( "foo" ) as foo_scope: v = tf.get_variable( "v" , [ 1 ]) with tf.variable_scope(foo_scope): w = tf.get_variable( "w" , [ 1 ]) with tf.variable_scope(foo_scope, reuse = True ): v1 = tf.get_variable( "v" , [ 1 ]) w1 = tf.get_variable( "w" , [ 1 ]) assert v1 is v assert w1 is w |
不管作用域如何嵌套,当使用with tf.variable_scope()打开一个已经存在的作用域时,就会跳转到这个作用域。
1
2
3
4
5
6
7
|
with tf.variable_scope( "foo" ) as foo_scope: assert foo_scope.name = = "foo" with tf.variable_scope( "bar" ): with tf.variable_scope( "baz" ) as other_scope: assert other_scope.name = = "bar/baz" with tf.variable_scope(foo_scope) as foo_scope2: assert foo_scope2.name = = "foo" # Not changed. |
variable scope的Initializers可以创递给子空间和tf.get_variable()函数,除非中间有函数改变,否则不变。
1
2
3
4
5
6
7
8
9
10
11
|
with tf.variable_scope( "foo" , initializer = tf.constant_initializer( 0.4 )): v = tf.get_variable( "v" , [ 1 ]) assert v. eval () = = 0.4 # Default initializer as set above. w = tf.get_variable( "w" , [ 1 ], initializer = tf.constant_initializer( 0.3 )): assert w. eval () = = 0.3 # Specific initializer overrides the default. with tf.variable_scope( "bar" ): v = tf.get_variable( "v" , [ 1 ]) assert v. eval () = = 0.4 # Inherited default initializer. with tf.variable_scope( "baz" , initializer = tf.constant_initializer( 0.2 )): v = tf.get_variable( "v" , [ 1 ]) assert v. eval () = = 0.2 # Changed default initializer. |
算子(ops)会受变量作用域(variable scope)影响,相当于隐式地打开了同名的名称作用域(name scope),如+这个算子的名称为foo/add
1
2
3
|
with tf.variable_scope( "foo" ): x = 1.0 + tf.get_variable( "v" , [ 1 ]) assert x.op.name = = "foo/add" |
除了变量作用域(variable scope),还可以显式打开名称作用域(name scope),名称作用域仅仅影响算子的名称,不影响变量的名称。另外如果tf.variable_scope()传入字符参数,创建变量作用域的同时会隐式创建同名的名称作用域。如下面的例子,变量v的作用域是foo,而算子x的算子变为foo/bar,因为有隐式创建名称作用域foo
1
2
3
4
5
6
|
with tf.variable_scope( "foo" ): with tf.name_scope( "bar" ): v = tf.get_variable( "v" , [ 1 ]) x = 1.0 + v assert v.name = = "foo/v:0" assert x.op.name = = "foo/bar/add" |
注意: 如果tf.variable_scope()传入的不是字符串而是scope对象,则不会隐式创建同名的名称作用域。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://www.cnblogs.com/MY0213/p/9208503.html