本项目利用python以及opencv实现信用卡的数字识别
前期准备
- 导入工具包
- 定义功能函数
模板图像处理
- 读取模板图像 cv2.imread(img)
- 灰度化处理 cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
- 二值化 cv2.threshold()
- 轮廓 - 轮廓
信用卡图像处理
- 读取信用卡图像 cv2.imread(img)
- 灰度化处理 cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
- 礼帽处理 cv2.morphologyEx(gray,cv2.MORPH_TOPHAT,rectKernel)
- Sobel边缘检测 cv2.Sobel(tophat, ddepth=cv2.CV_32F, dx=1, dy=0, ksize=-1)
- 闭操作 cv2.morphologyEx(gradX, cv2.MORPH_CLOSE, rectKernel)
- 计算轮廓 cv2.findContours
- 模板检测 cv2.matchTemplate(roi, digitROI,cv2.TM_CCOEFF)
原始数据展示
结果展示
1 前期准备
1
2
3
4
5
6
7
8
|
# 导入工具包 # opencv读取图片的格式为b g r # matplotlib图片的格式为 r g b import numpy as np import cv2 from imutils import contours import matplotlib.pyplot as plt % matplotlib inline |
1
2
3
4
|
# 信用卡的位置 predict_card = "images/credit_card_01.png" # 模板的位置 template = "images/ocr_a_reference.png" |
1
2
3
4
5
6
7
|
# 指定信用卡类型 FIRST_NUMBER = { "3" : "American Express" , "4" : "Visa" , "5" : "MasterCard" , "6" : "Discover Card" } |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
|
# 定义一些功能函数 # 对框进行排序 def sort_contours(cnts, method = "left-to-right" ): reverse = False i = 0 if method = = "right-to-left" or method = = "bottom-to-top" : reverse = True if method = = "top-to-bottom" or method = = "bottom-to-top" : i = 1 boundingBoxes = [cv2.boundingRect(c) for c in cnts] #用一个最小的矩形,把找到的形状包起来x,y,h,w (cnts, boundingBoxes) = zip ( * sorted ( zip (cnts, boundingBoxes), key = lambda b: b[ 1 ][i], reverse = reverse)) return cnts, boundingBoxes # 调整图片尺寸大小 def resize(image, width = None , height = None , inter = cv2.INTER_AREA): dim = None (h, w) = image.shape[: 2 ] if width is None and height is None : return image if width is None : r = height / float (h) dim = ( int (w * r), height) else : r = width / float (w) dim = (width, int (h * r)) resized = cv2.resize(image, dim, interpolation = inter) return resized # 定义cv2展示函数 def cv_show(name,img): cv2.imshow(name,img) cv2.waitKey( 0 ) cv2.destroyAllWindows() |
2 对模板图像进行预处理操作
读取模板图像
1
2
3
4
|
# 读取模板图像 img = cv2.imread(template) cv_show( "img" ,img) plt.imshow(img) |
1
|
< matplotlib.image.AxesImage at 0x2b2e04ad128> |
模板图像转灰度图像
1
2
3
4
|
# 转灰度图 ref = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) cv_show( "ref" ,ref) plt.imshow(ref) |
1
|
< matplotlib.image.AxesImage at 0x2b2e25d9e48> |
转为二值图像
1
2
3
|
ref = cv2.threshold(ref, 10 , 255 ,cv2.THRESH_BINARY_INV)[ 1 ] cv_show( "ref" ,ref) plt.imshow(ref) |
1
|
< matplotlib.image.AxesImage at 0x2b2e2832a90> |
计算轮廓
1
2
3
4
5
6
7
8
|
#cv2.findContours()函数接受的参数为二值图,即黑白的(不是灰度图),cv2.RETR_EXTERNAL只检测外轮廓,cv2.CHAIN_APPROX_SIMPLE只保留终点坐标 #返回的list中每个元素都是图像中的一个轮廓 # 在二值化后的图像中计算轮廓 refCnts,hierarchy = cv2.findContours(ref.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) # 在原图上画出轮廓 cv2.drawContours(img,refCnts, - 1 ,( 0 , 0 , 255 ), 3 ) cv_show( "img" ,img) plt.imshow(img) |
1
|
< matplotlib.image.AxesImage at 0x2b2e256f908> |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
print (np.array(refCnts).shape) # 排序,从左到右,从上到下 refCnts = sort_contours(refCnts,method = "left-to-right" )[ 0 ] digits = {} # 遍历每一个轮廓 for (i, c) in enumerate (refCnts): # 计算外接矩形并且resize成合适大小 (x, y, w, h) = cv2.boundingRect(c) roi = ref[y:y + h, x:x + w] roi = cv2.resize(roi, ( 57 , 88 )) # 每一个数字对应每一个模板 digits[i] = roi |
(10,)
3 对信用卡进行处理
初始化卷积核
1
2
|
rectKernel = cv2.getStructuringElement(cv2.MORPH_RECT, ( 9 , 3 )) sqKernel = cv2.getStructuringElement(cv2.MORPH_RECT, ( 5 , 5 )) |
读取信用卡
1
2
3
|
image = cv2.imread(predict_card) cv_show( "image" ,image) plt.imshow(image) |
1
|
< matplotlib.image.AxesImage at 0x2b2e294c9b0> |
对图像进行预处理操作
1
2
3
4
5
6
|
# 先对图像进行resize操作 image = resize(image,width = 300 ) # 灰度化处理 gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY) cv_show( "gray" ,gray) plt.imshow(gray) |
1
|
< matplotlib.image.AxesImage at 0x2b2e255d828> |
对图像礼帽操作
- 礼帽 = 原始输入-开运算结果
- 开运算:先腐蚀,再膨胀
- 突出更明亮的区域
1
2
3
|
tophat = cv2.morphologyEx(gray,cv2.MORPH_TOPHAT,rectKernel) cv_show( "tophat" ,tophat) plt.imshow(tophat) |
1
|
< matplotlib.image.AxesImage at 0x2b2eb008e48> |
用Sobel算子边缘检测
1
2
3
4
5
6
7
8
|
gradX = cv2.Sobel(tophat, ddepth = cv2.CV_32F, dx = 1 , dy = 0 , ksize = - 1 ) gradX = np.absolute(gradX) (minVal, maxVal) = (np. min (gradX), np. max (gradX)) gradX = ( 255 * ((gradX - minVal) / (maxVal - minVal))) gradX = gradX.astype( "uint8" ) print (np.array(gradX).shape) cv_show( "gradX" ,gradX) plt.imshow(gradX) |
1
2
|
(189, 300) < matplotlib.image.AxesImage at 0x2b2e0797400> |
对图像闭操作
- 闭操作:先膨胀,再腐蚀
- 可以将数字连在一起
1
2
3
|
gradX = cv2.morphologyEx(gradX, cv2.MORPH_CLOSE, rectKernel) cv_show( "gradX" ,gradX) plt.imshow(gradX) |
1
|
< matplotlib.image.AxesImage at 0x2b2e097cc88> |
1
2
3
4
|
#THRESH_OTSU会自动寻找合适的阈值,适合双峰,需把阈值参数设置为0 thresh = cv2.threshold(gradX, 0 , 255 ,cv2.THRESH_BINARY | cv2.THRESH_OTSU)[ 1 ] cv_show( "thresh" ,thresh) plt.imshow(thresh) |
1
|
< matplotlib.image.AxesImage at 0x2b2e24a0dd8> |
1
2
3
4
|
# 再进行一次闭操作 thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, sqKernel) #再来一个闭操作 cv_show( "thresh" ,thresh) plt.imshow(thresh) |
1
|
< matplotlib.image.AxesImage at 0x2b2e25fe748> |
计算轮廓
1
2
3
4
5
6
|
threshCnts, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) cnts = threshCnts cur_img = image.copy() cv2.drawContours(cur_img,cnts, - 1 ,( 0 , 0 , 255 ), 3 ) cv_show( "img" ,cur_img) plt.imshow(cur_img) |
1
|
< matplotlib.image.AxesImage at 0x2b2eb17c780> |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
locs = [] # 遍历轮廓 for (i, c) in enumerate (cnts): # 计算矩形 (x, y, w, h) = cv2.boundingRect(c) ar = w / float (h) # 选择合适的区域,根据实际任务来,这里的基本都是四个数字一组 if ar > 2.5 and ar < 4.0 : if (w > 40 and w < 55 ) and (h > 10 and h < 20 ): #符合的留下来 locs.append((x, y, w, h)) # 将符合的轮廓从左到右排序 locs = sorted (locs, key = lambda x:x[ 0 ]) output = [] |
模板匹配
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
|
# 遍历每一个轮廓中的数字 for (i, (gX, gY, gW, gH)) in enumerate (locs): # initialize the list of group digits groupOutput = [] # 根据坐标提取每一个组 group = gray[gY - 5 :gY + gH + 5 , gX - 5 :gX + gW + 5 ] cv_show( "group" ,group) # 预处理 group = cv2.threshold(group, 0 , 255 ,cv2.THRESH_BINARY | cv2.THRESH_OTSU)[ 1 ] cv_show( "group" ,group) # 计算每一组的轮廓 digitCnts,hierarchy = cv2.findContours(group.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) digitCnts = contours.sort_contours(digitCnts,method = "left-to-right" )[ 0 ] # 计算每一组中的每一个数值 for c in digitCnts: # 找到当前数值的轮廓,resize成合适的的大小 (x, y, w, h) = cv2.boundingRect(c) roi = group[y:y + h, x:x + w] roi = cv2.resize(roi, ( 57 , 88 )) cv_show( "roi" ,roi) # 计算匹配得分 scores = [] # 在模板中计算每一个得分 for (digit, digitROI) in digits.items(): # 模板匹配 result = cv2.matchTemplate(roi, digitROI,cv2.TM_CCOEFF) (_, score, _, _) = cv2.minMaxLoc(result) scores.append(score) # 得到最合适的数字 groupOutput.append( str (np.argmax(scores))) # 画出来 cv2.rectangle(image, (gX - 5 , gY - 5 ),(gX + gW + 5 , gY + gH + 5 ), ( 0 , 0 , 255 ), 1 ) cv2.putText(image, "".join(groupOutput), (gX, gY - 15 ),cv2.FONT_HERSHEY_SIMPLEX, 0.65 , ( 0 , 0 , 255 ), 2 ) # 得到结果 output.extend(groupOutput) |
1
2
3
4
5
|
# 打印结果 print ( "Credit Card Type: {}" . format (FIRST_NUMBER[output[ 0 ]])) print ( "Credit Card #: {}" . format ("".join(output))) cv_show( "Image" ,image) plt.imshow(image) |
1
2
3
4
5
6
7
8
|
Credit Card Type: Visa Credit Card #: 4000123456789010 < matplotlib.image.AxesImage at 0x2b2eb040748> |
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/Mind_programmonkey/article/details/99650303