环境
1
2
3
|
pip install opencv - python = = 3.4 . 2.16 pip install opencv - contrib - python = = 3.4 . 2.16 |
理论
克里斯·哈里斯(Chris Harris)和迈克·史蒂芬斯(Mike Stephens)在1988年的论文《组合式拐角和边缘检测器》中做了一次尝试找到这些拐角的尝试,所以现在将其称为哈里斯拐角检测器。
函数:cv2.cornerHarris(),cv2.cornerSubPix()
示例代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
import cv2 import numpy as np filename = 'molecule.png' img = cv2.imread(filename) gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) gray = np.float32(gray) dst = cv2.cornerHarris(gray, 2 , 3 , 0.04 ) #result is dilated for marking the corners, not important dst = cv2.dilate(dst, None ) # Threshold for an optimal value, it may vary depending on the image. img[dst> 0.01 * dst. max ()] = [ 0 , 0 , 255 ] cv2.imshow( 'dst' ,img) if cv2.waitKey( 0 ) & 0xff = = 27 : cv2.destroyAllWindows() |
原图
输出图
SubPixel精度的角落
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
|
import cv2 import numpy as np filename = 'molecule.png' img = cv2.imread(filename) gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) # find Harris corners gray = np.float32(gray) dst = cv2.cornerHarris(gray, 2 , 3 , 0.04 ) dst = cv2.dilate(dst, None ) ret, dst = cv2.threshold(dst, 0.01 * dst. max (), 255 , 0 ) dst = np.uint8(dst) # find centroids ret, labels, stats, centroids = cv2.connectedComponentsWithStats(dst) # define the criteria to stop and refine the corners criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100 , 0.001 ) corners = cv2.cornerSubPix(gray,np.float32(centroids),( 5 , 5 ),( - 1 , - 1 ),criteria) # Now draw them res = np.hstack((centroids,corners)) res = np.int0(res) img[res[:, 1 ],res[:, 0 ]] = [ 0 , 0 , 255 ] img[res[:, 3 ],res[:, 2 ]] = [ 0 , 255 , 0 ] cv2.imwrite( 'subpixel5.png' ,img) |
输出图
参考
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_features_harris/py_features_harris.html#harris-corners
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/u012325865/article/details/103044562