以读取VOC2012语义分割数据集为例,具体见代码注释:
VocDataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
|
from PIL import Image import torch import torch.utils.data as data import numpy as np import os import torchvision import torchvision.transforms as transforms import time #VOC数据集分类对应颜色标签 VOC_COLORMAP = [[ 0 , 0 , 0 ], [ 128 , 0 , 0 ], [ 0 , 128 , 0 ], [ 128 , 128 , 0 ], [ 0 , 0 , 128 ], [ 128 , 0 , 128 ], [ 0 , 128 , 128 ], [ 128 , 128 , 128 ], [ 64 , 0 , 0 ], [ 192 , 0 , 0 ], [ 64 , 128 , 0 ], [ 192 , 128 , 0 ], [ 64 , 0 , 128 ], [ 192 , 0 , 128 ], [ 64 , 128 , 128 ], [ 192 , 128 , 128 ], [ 0 , 64 , 0 ], [ 128 , 64 , 0 ], [ 0 , 192 , 0 ], [ 128 , 192 , 0 ], [ 0 , 64 , 128 ]] #颜色标签空间转到序号标签空间,就他妈这里浪费巨量的时间,这里还他妈的有问题 def voc_label_indices(colormap, colormap2label): """Assign label indices for Pascal VOC2012 Dataset.""" idx = ((colormap[:, :, 2 ] * 256 + colormap[ :, :, 1 ]) * 256 + colormap[:, :, 0 ]) #out = np.empty(idx.shape, dtype = np.int64) out = colormap2label[idx] out = out.astype(np.int64) #数据类型转换 end = time.time() return out class MyDataset(data.Dataset): #创建自定义的数据读取类 def __init__( self , root, is_train, crop_size = ( 320 , 480 )): self .rgb_mean = ( 0.485 , 0.456 , 0.406 ) self .rgb_std = ( 0.229 , 0.224 , 0.225 ) self .root = root self .crop_size = crop_size images = [] #创建空列表存文件名称 txt_fname = '%s/ImageSets/Segmentation/%s' % (root, 'train.txt' if is_train else 'val.txt' ) with open (txt_fname, 'r' ) as f: self .images = f.read().split() #数据名称整理 self .files = [] for name in self .images: img_file = os.path.join( self .root, "JPEGImages/%s.jpg" % name) label_file = os.path.join( self .root, "SegmentationClass/%s.png" % name) self .files.append({ "img" : img_file, "label" : label_file, "name" : name }) self .colormap2label = np.zeros( 256 * * 3 ) #整个循环的意思就是将颜色标签映射为单通道的数组索引 for i, cm in enumerate (VOC_COLORMAP): self .colormap2label[(cm[ 2 ] * 256 + cm[ 1 ]) * 256 + cm[ 0 ]] = i #按照索引读取每个元素的具体内容 def __getitem__( self , index): datafiles = self .files[index] name = datafiles[ "name" ] image = Image. open (datafiles[ "img" ]) label = Image. open (datafiles[ "label" ]).convert( 'RGB' ) #打开的是PNG格式的图片要转到rgb的格式下,不然结果会比较要命 #以图像中心为中心截取固定大小图像,小于固定大小的图像则自动填0 imgCenterCrop = transforms.Compose([ transforms.CenterCrop( self .crop_size), transforms.ToTensor(), transforms.Normalize( self .rgb_mean, self .rgb_std), #图像数据正则化 ]) labelCenterCrop = transforms.CenterCrop( self .crop_size) cropImage = imgCenterCrop(image) croplabel = labelCenterCrop(label) croplabel = torch.from_numpy(np.array(croplabel)). long () #把标签数据类型转为torch #将颜色标签图转为序号标签图 mylabel = voc_label_indices(croplabel, self .colormap2label) return cropImage,mylabel #返回图像数据长度 def __len__( self ): return len ( self .files) |
Train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
|
import matplotlib.pyplot as plt import torch.utils.data as data import torchvision.transforms as transforms import numpy as np from PIL import Image from VocDataset import MyDataset #VOC数据集分类对应颜色标签 VOC_COLORMAP = [[ 0 , 0 , 0 ], [ 128 , 0 , 0 ], [ 0 , 128 , 0 ], [ 128 , 128 , 0 ], [ 0 , 0 , 128 ], [ 128 , 0 , 128 ], [ 0 , 128 , 128 ], [ 128 , 128 , 128 ], [ 64 , 0 , 0 ], [ 192 , 0 , 0 ], [ 64 , 128 , 0 ], [ 192 , 128 , 0 ], [ 64 , 0 , 128 ], [ 192 , 0 , 128 ], [ 64 , 128 , 128 ], [ 192 , 128 , 128 ], [ 0 , 64 , 0 ], [ 128 , 64 , 0 ], [ 0 , 192 , 0 ], [ 128 , 192 , 0 ], [ 0 , 64 , 128 ]] root = '../data/VOCdevkit/VOC2012' train_data = MyDataset(root, True ) trainloader = data.DataLoader(train_data, 4 ) #从数据集中拿出一个批次的数据 for i, data in enumerate (trainloader): getimgs, labels = data img = transforms.ToPILImage()(getimgs[ 0 ]) labels = labels.numpy() #tensor转numpy labels = labels[ 0 ] #获得批次标签集中的一张标签图像 labels = labels.transpose(( 1 , 0 )) #数组维度切换,将第1维换到第0维,第0维换到第1维 ##将单通道索引标签图片映射回颜色标签图片 newIm = Image.new( 'RGB' , ( 480 , 320 )) #创建一张与标签大小相同的图片,用以显示标签所对应的颜色 for i in range ( 0 , 480 ): for j in range ( 0 , 320 ): sele = labels[i][j] #取得坐标点对应像素的值 newIm.putpixel((i, j), ( int (VOC_COLORMAP[sele][ 0 ]), int (VOC_COLORMAP[sele][ 1 ]), int (VOC_COLORMAP[sele][ 2 ]))) #显示图像和标签 plt.figure( "image" ) ax1 = plt.subplot( 1 , 2 , 1 ) ax2 = plt.subplot( 1 , 2 , 2 ) plt.sca(ax1) plt.imshow(img) plt.sca(ax2) plt.imshow(newIm) plt.show() |
以上这篇Pytorch 实现数据集自定义读取就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/weixinhum/article/details/86232734