ckpt
1
2
3
4
5
6
|
from tensorflow.python import pywrap_tensorflow checkpoint_path = 'model.ckpt-8000' reader = pywrap_tensorflow.NewCheckpointReader(checkpoint_path) var_to_shape_map = reader.get_variable_to_shape_map() for key in var_to_shape_map: print ( "tensor_name: " , key) |
pb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
import tensorflow as tf import os model_name = './mobilenet_v2_140_inf_graph.pb' def create_graph(): with tf.gfile.FastGFile(model_name, 'rb' ) as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) tf.import_graph_def(graph_def, name = '') create_graph() tensor_name_list = [tensor.name for tensor in tf.get_default_graph().as_graph_def().node] for tensor_name in tensor_name_list: print (tensor_name, '\n' ) |
ckpt转pb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
def freeze_graph(input_checkpoint,output_graph): ''' :param input_checkpoint: :param output_graph: PB模型保存路径 :return: ''' output_node_names = "xxx" saver = tf.train.import_meta_graph(input_checkpoint + '.meta' , clear_devices = True ) graph = tf.get_default_graph() input_graph_def = graph.as_graph_def() with tf.Session() as sess: saver.restore(sess, input_checkpoint) output_graph_def = graph_util.convert_variables_to_constants( sess = sess, input_graph_def = input_graph_def, # 等于:sess.graph_def output_node_names = output_node_names.split( "," )) with tf.gfile.GFile(output_graph, "wb" ) as f: f.write(output_graph_def.SerializeToString()) print ( "%d ops in the final graph." % len (output_graph_def.node)) for op in graph.get_operations(): print (op.name, op.values()) |
以上这篇tensorflow ckpt模型和pb模型获取节点名称,及ckpt转pb模型实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/qq_38109843/article/details/88841306