本章的内容完全基于上文的理论基础,实际上一旦理解了索引背后的机制,那么选择高性能的策略就变成了纯粹的推理,并且可以理解这些策略背后的逻辑。
示例数据库
为了讨论索引策略,需要一个数据量不算小的数据库作为示例。本文选用MySQL官方文档中提供的示例数据库之一:employees。这个数据库关系复杂度适中,且数据量较大。下图是这个数据库的E-R关系图(引用自MySQL官方手册):
图12
MySQL官方文档中关于此数据库的页面为http://dev.mysql.com/doc/employee/en/employee.html。里面详细介绍了此数据库,并提供了下载地址和导入方法,如果有兴趣导入此数据库到自己的MySQL可以参考文中内容。
最左前缀原理与相关优化
高效使用索引的首要条件是知道什么样的查询会使用到索引,这个问题和B+Tree中的“最左前缀原理”有关,下面通过例子说明最左前缀原理。
这里先说一下联合索引的概念。在上文中,我们都是假设索引只引用了单个的列,实际上,MySQL中的索引可以以一定顺序引用多个列,这种索引叫做联合索引,一般的,一个联合索引是一个有序元组,其中各个元素均为数据表的一列,实际上要严格定义索引需要用到关系代数,但是这里我不想讨论太多关系代数的话题,因为那样会显得很枯燥,所以这里就不再做严格定义。另外,单列索引可以看成联合索引元素数为1的特例。
以employees.titles表为例,下面先查看其上都有哪些索引:
SHOW INDEX FROM employees.titles;
+--------+------------+----------+--------------+-------------+-----------+-------------+------+------------+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Null | Index_type |
+--------+------------+----------+--------------+-------------+-----------+-------------+------+------------+
| titles | 0 | PRIMARY | 1 | emp_no | A | NULL | | BTREE |
| titles | 0 | PRIMARY | 2 | title | A | NULL | | BTREE |
| titles | 0 | PRIMARY | 3 | from_date | A | 443308 | | BTREE |
| titles | 1 | emp_no | 1 | emp_no | A | 443308 | | BTREE |
+--------+------------+----------+--------------+-------------+-----------+-------------+------+------------+
从结果中可以到titles表的主索引为
ALTER TABLE employees.titles DROP INDEX emp_no;
这样就可以专心分析索引PRIMARY的行为了。
情况一:全列匹配。
EXPLAIN SELECT * FROM employees.titles WHERE emp_no='10001' AND src="/uploads/allimg/191128/1-19112QAJN47.png" style="border: 1px solid rgb(204, 204, 204); vertical-align: middle; padding: 1px; overflow: hidden; max-width: 816px; width: 437px; height: 175px;" />
图13
这样就会形成一个紧凑的索引结构,近似顺序填满。由于每次插入时也不需要移动已有数据,因此效率很高,也不会增加很多开销在维护索引上。
如果使用非自增主键(如果身份证号或学号等),由于每次插入主键的值近似于随机,因此每次新纪录都要被插到现有索引页得中间某个位置:
图14
此时MySQL不得不为了将新记录插到合适位置而移动数据,甚至目标页面可能已经被回写到磁盘上而从缓存中清掉,此时又要从磁盘上读回来,这增加了很多开销,同时频繁的移动、分页操作造成了大量的碎片,得到了不够紧凑的索引结构,后续不得不通过OPTIMIZE TABLE来重建表并优化填充页面。
因此,只要可以,请尽量在InnoDB上采用自增字段做主键。