服务器之家:专注于服务器技术及软件下载分享
分类导航

Mysql|Sql Server|Oracle|Redis|MongoDB|PostgreSQL|Sqlite|DB2|mariadb|Access|数据库技术|

服务器之家 - 数据库 - Redis - 像Flink一样使用Redis

像Flink一样使用Redis

2023-05-07 05:05未知服务器之家 Redis

Apache Flink和 Redis 是两个强大的工具,可以一起使用来构建可以处理大量数据的实时数据处理管道。Flink 为处理数据流提供了一个高度可扩展和容错的平台,而 Redis 提供了一个高性能的内存数据库,可用于存储和查询数据。在本文

Apache Flink和 Redis 是两个强大的工具,可以一起使用来构建可以处理大量数据的实时数据处理管道。Flink 为处理数据流提供了一个高度可扩展和容错的平台,而 Redis 提供了一个高性能的内存数据库,可用于存储和查询数据。在本文中,将探讨如何使用 Flink 来使用异步函数调用 Redis,并展示如何使用它以非阻塞方式将数据推送到 Redis。

Redis的故事

像Flink一样使用Redis

“Redis:不仅仅是一个缓存

Redis 是一种功能强大的 NoSQL 内存数据结构存储,已成为开发人员的首选工具。虽然它通常被认为只是一个缓存,但 Redis 远不止于此。它可以作为数据库、消息代理和缓存三者合一。

Redis 的优势之一是它的多功能性。它支持各种数据类型,包括字符串、列表、集合、有序集合、哈希、流、HyperLogLogs 和位图。Redis 还提供地理空间索引和半径查询,使其成为基于位置的应用程序的宝贵工具。

Redis 的功能超出了它的数据模型。它具有内置的复制、Lua 脚本和事务,并且可以使用 Redis Cluster 自动分区数据。此外,Redis 通过 Redis Sentinel 提供高可用性。

注意:在本文中,将更多地关注Redis集群模式

像Flink一样使用Redis

Redis 集群使用带哈希槽的算法分片来确定哪个分片拥有给定的键并简化添加新实例的过程。同时,它使用 Gossiping 来确定集群的健康状况,如果主节点没有响应,可以提升辅助节点以保持集群健康。必须有奇数个主节点和两个副本才能进行稳健设置,以避免脑裂现象(集群无法决定提升谁并最终做出分裂决定)

为了与 Redis 集群对话,将使用lettuce和 Redis Async Java 客户端。

Flink 的故事

像Flink一样使用Redis

Apache Flink 是一个开源、统一的流处理和批处理框架,旨在处理实时、高吞吐量和容错数据处理。它建立在 Apache Gelly 框架之上,旨在支持有界和无界流上的复杂事件处理和有状态计算,它的快速之处在于其利用内存中性能和异步检查本地状态。

故事的主人公

像Flink一样使用Redis

与数据库的异步交互是流处理应用程序的游戏规则改变者。通过这种方法,单个函数实例可以同时处理多个请求,从而允许并发响应并显着提高吞吐量。通过将等待时间与其他请求和响应重叠,处理管道变得更加高效。

我们将以电商数据为例,计算24小时滑动窗口中每个品类的销售额,滑动时间为30秒,下沉到Redis,以便更快地查找下游服务。

充足的数据集

Category, TimeStamp
Electronics,1679832334
Furniture,1679832336
Fashion,1679832378
Food,16798323536

Flink Kafka 消费者类

package Aysnc_kafka_redis;

import AsyncIO.RedisSink;
import akka.japi.tuple.Tuple3;
import deserializer.Ecommdeserialize;
import model.Ecomm;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.connector.kafka.source.KafkaSource;
import org.apache.flink.connector.kafka.source.enumerator.initializer.OffsetsInitializer;
import org.apache.flink.streaming.api.datastream.AsyncDataStream;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor;
import org.apache.flink.streaming.api.functions.windowing.WindowFunction;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;
import java.util.concurrent.TimeUnit;

public class FlinkAsyncRedis {

public static void main(String[] args) throws Exception {


final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
Ecommdeserialize jsonde = new Ecommdeserialize();

KafkaSource<Ecomm> source = KafkaSource.<Ecomm>builder()
.setTopics("{dummytopic}")
.setBootstrapServers("{dummybootstrap}")
.setGroupId("test_flink")
.setStartingOffsets(OffsetsInitializer.earliest())
.setValueOnlyDeserializer(jsonde)
.build();


DataStream<Ecomm> orderData = env.fromSource(source, WatermarkStrategy.noWatermarks(), "Kafka Source");


orderData.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<Ecomm>(Time.seconds(10)) {
@Override
public long extractTimestamp(Ecomm element) {
return element.getEventTimestamp(); // extract watermark column from stream
}
});

SingleOutputStreamOperator<Tuple3<String, Long, Long>> aggregatedData = orderData.keyBy(Ecomm::getCategory)
.window(SlidingEventTimeWindows.of(Time.hours(24),Time.seconds(30)))
.apply((WindowFunction<Ecomm, Tuple3<String, Long, Long>, String, TimeWindow>) (key, window, input, out) -> {
long count = 0;
for (Ecomm event : input) {
count++; // increment the count for each event in the window
}
out.collect(new Tuple3<>(key, window.getEnd(), count)); // output the category, window end time, and count
});


// calling async I/0 operator to sink data to redis in UnOrdered way
SingleOutputStreamOperator<String> sinkResults = AsyncDataStream.unorderedWait(aggregatedData,new RedisSink(
"{redisClusterUrl}"),
1000, // the timeout defines how long an asynchronous operation take before it is finally considered failed
TimeUnit.MILLISECONDS,
100); //capacity This parameter defines how many asynchronous requests may be in progress at the same time.

sinkResults.print(); // print out the redis set response stored in the future for every key

env.execute("RedisAsyncSink"); // you will be able to see your job running on cluster by this name


}

}

Redis 设置键异步 I/0 运算符

package AsyncIO;

import akka.japi.tuple.Tuple3;
import io.lettuce.core.RedisFuture;
import io.lettuce.core.cluster.RedisClusterClient;
import io.lettuce.core.cluster.api.StatefulRedisClusterConnection;
import io.lettuce.core.cluster.api.async.RedisAdvancedClusterAsyncCommands;
import lombok.AllArgsConstructor;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.async.ResultFuture;
import org.apache.flink.streaming.api.functions.async.RichAsyncFunction;
import scala.collection.immutable.List;

import java.util.ArrayList;
import java.util.Collections;

@AllArgsConstructor
public class RedisSink extends RichAsyncFunction<Tuple3<String, Long, Long>, String> {

String redisUrl;

public RedisSink(String redisUrl){
this.redisUrl=redisUrl;
}

private transient RedisClusterClient client = null;
private transient StatefulRedisClusterConnection<String, String> clusterConnection = null;
private transient RedisAdvancedClusterAsyncCommands<String, String> asyncCall = null;


// method executes any operator-specific initialization
@Override
public void open(Configuration parameters) {
if (client == null ) {
client = RedisClusterClient.create(redisUrl);
}
if (clusterConnection == null) {
clusterConnection = client.connect();
}
if (asyncCall == null) {
asyncCall = clusterConnection.async();
}
}

// core logic to set key in redis using async connection and return result of the call via ResultFuture
@Override
public void asyncInvoke(Tuple3<String, Long, Long> stream, ResultFuture<String> resultFuture) {

String productKey = stream.t1();
System.out.println("RedisKey:" + productKey); //for logging
String count = stream.t3().toString();
System.out.println("Redisvalue:" + count); //for logging
RedisFuture<String> setResult = asyncCall.set(productKey,count);

setResult.whenComplete((result, throwable) -> {if(throwable!=null){
System.out.println("Callback from redis failed:" + throwable);
resultFuture.complete(new ArrayList<>());
}
else{
resultFuture.complete(new ArrayList(Collections.singleton(result)));
}});
}

// method closes what was opened during initialization to free any resources
// held by the operator (e.g. open network connections, io streams)
@Override
public void close() throws Exception {
client.close();
}

}

用例:

  • 数据科学模型可以使用流式传输到 Redis 的数据来查找和生成更多在销售季节经常销售的类别的产品。
  • 它可用于在网页上展示图表和数字作为销售统计数据,以在用户中产生积极购买的动力。

要点:

  • Flink 为处理数据流提供了一个高度可扩展和容错的平台,而 Redis 提供了一个高性能的内存数据库,可用于存储和查询数据。
  • 异步编程可用于通过允许对外部系统(如 Redis)进行非阻塞调用来提高数据处理管道的性能。
  • 两者的结合可能有助于带来实时数据决策文化。

延伸 · 阅读

精彩推荐
  • Redisredis缓存存储Session原理机制

    redis缓存存储Session原理机制

    这篇文章主要为大家介绍了redis缓存存储Session原理机制详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪...

    程序媛张小妍9252021-11-25
  • RedisRedis Template实现分布式锁的实例代码

    Redis Template实现分布式锁的实例代码

    这篇文章主要介绍了Redis Template实现分布式锁,需要的朋友可以参考下 ...

    晴天小哥哥2592019-11-18
  • Redis详解三分钟快速搭建分布式高可用的Redis集群

    详解三分钟快速搭建分布式高可用的Redis集群

    这篇文章主要介绍了详解三分钟快速搭建分布式高可用的Redis集群,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,...

    万猫学社4502021-07-25
  • RedisRedis 6.X Cluster 集群搭建

    Redis 6.X Cluster 集群搭建

    码哥带大家完成在 CentOS 7 中安装 Redis 6.x 教程。在学习 Redis Cluster 集群之前,我们需要先搭建一套集群环境。机器有限,实现目标是一台机器上搭建 6 个节...

    码哥字节15752021-04-07
  • Redis《面试八股文》之 Redis十六卷

    《面试八股文》之 Redis十六卷

    redis 作为我们最常用的内存数据库,很多地方你都能够发现它的身影,比如说登录信息的存储,分布式锁的使用,其经常被我们当做缓存去使用。...

    moon聊技术8182021-07-26
  • Redis关于Redis数据库入门详细介绍

    关于Redis数据库入门详细介绍

    大家好,本篇文章主要讲的是关于Redis数据库入门详细介绍,感兴趣的同学赶快来看一看吧,对你有帮助的话记得收藏一下,方便下次浏览...

    沃尔码6982022-01-24
  • RedisRedis集群的5种使用方式,各自优缺点分析

    Redis集群的5种使用方式,各自优缺点分析

    Redis 多副本,采用主从(replication)部署结构,相较于单副本而言最大的特点就是主从实例间数据实时同步,并且提供数据持久化和备份策略。...

    优知学院4082021-08-10
  • Redis如何使用Redis锁处理并发问题详解

    如何使用Redis锁处理并发问题详解

    这篇文章主要给大家介绍了关于如何使用Redis锁处理并发问题的相关资料,文中通过示例代码介绍的非常详细,对大家学习或者使用Redis具有一定的参考学习...

    haofly4522019-11-26