c#编写的简单数字图像处理程序,数字图像处理的平时成绩和编程作业竟然占50%,那就把最近做的事写个札记吧。
先放个最终做成提交的效果看看:
1.直方图均衡化
2.算子锐化
3.空域增强
一、要达到的目的和效果
1.打开,保存图片;
2.获取图像灰度值,图像坐标;
3.进行线性变换,直方图均衡化处理;
4.直方图变换增强,以及各种滤波处理;
5.图像锐化(kirsch,laplace,sobel等算子)。
二、编程环境及语言
c#-windowsform-vs2015
三、图标
最近发现了一个完全免费的矢量图标网站阿里妈妈iconfont,超级好用。
当然也可以自己动手画一个
四、创建窗体
1.先建一个c#windows窗体应用程序,设置好保存路径和项目名称;
2.打开工具箱,找到menuscript,加到窗体中,依次填写菜单以及子菜单的名称,菜单里将完成主要的图像处理操作;
3.因为要显示处理前后的图片,所以再添加两个picturebox控件,可以设置停靠模式为stretchimage;再加两个groupbox,每个groupbox里添加label和textbox控件,用来显示图像灰度值及坐标,这样窗体基本搭建完成,还是挺简单的。
五、主要代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
|
using system; using system.collections.generic; using system.componentmodel; using system.data; using system.drawing; using system.drawing.imaging; using system.linq; using system.text; using system.windows.forms; namespace text1 { public partial class imageenhancement : form { public imageenhancement() { initializecomponent(); } bitmap bitmap; int iw, ih; //打开文件 private void 打开toolstripmenuitem_click( object sender, eventargs e) { picturebox1.image = null ; //先设置两个picturebox为空 picturebox2.image = null ; //使用 openfiledialog类打开图片 openfiledialog open = new openfiledialog(); open.filter = "图像文件(*.bmp;*.jpg;*gif;*png;*.tif;*.wmf)|" + "*.bmp;*jpg;*gif;*png;*.tif;*.wmf" ; if (open.showdialog() == dialogresult.ok) { try { bitmap = (bitmap)image.fromfile(open.filename); } catch (exception exp) { messagebox.show(exp.message); } picturebox1.refresh(); picturebox1.image = bitmap; label6.text = "原图" ; iw = bitmap.width; ih = bitmap.height; } } //保存文件 private void 保存toolstripmenuitem_click( object sender, eventargs e) { string str; savefiledialog savefiledialog1 = new savefiledialog(); savefiledialog1.filter = "图像文件(*.bmp)|*.bmp|all file(*.*)|*.*" ; savefiledialog1.showdialog(); str = savefiledialog1.filename; picturebox2.image.save(str); } //退出 private void 退出toolstripmenuitem_click( object sender, eventargs e) { this .close(); } private void label5_click( object sender, eventargs e) { } //读取灰度值及坐标 private void picturebox1_mousedown( object sender, mouseeventargs e) { color pointrgb = bitmap.getpixel(e.x, e.y); textbox1.text = pointrgb.r.tostring(); textbox2.text = pointrgb.g.tostring(); textbox3.text = pointrgb.b.tostring(); textbox4.text = e.x.tostring(); textbox5.text = e.y.tostring(); int a = int .parse(textbox1.text); } //线性变换部分 private void linearpo_click( object sender, eventargs e) { if (bitmap != null ) { linearpoform linearform = new linearpoform(); if (linearform.showdialog() == dialogresult.ok) { rectangle rect = new rectangle(0, 0, bitmap.width, bitmap.height); system.drawing.imaging.bitmapdata bmpdata = bitmap.lockbits(rect, system.drawing.imaging.imagelockmode.readwrite, bitmap.pixelformat); intptr ptr = bmpdata.scan0; //int bytes = bitmap.width *; } } } private void textbox4_textchanged( object sender, eventargs e) { } private void label3_click( object sender, eventargs e) { } //对比度扩展 private void 对比度扩展toolstripmenuitem_click( object sender, eventargs e) { if (bitmap != null ) { strechdialog dialog = new strechdialog(); if (dialog.showdialog() == dialogresult.ok) { this .text = " 图像增强 对比度扩展 " ; bitmap bm = new bitmap(picturebox1.image); int x1 = convert.toint32(dialog.getx01); int y1 = convert.toint32(dialog.gety01); int x2 = convert.toint32(dialog.getx02); int y2 = convert.toint32(dialog.gety02); //计算灰度映射表 int [] pixmap = pixelsmap(x1, y1, x2, y2); //线性拉伸 bm = stretch(bm, pixmap, iw, ih); picturebox2.refresh(); picturebox2.image = bm; label7.text = "对比度扩展结果" ; } } } //计算灰度映射表 public int [] pixelsmap( int x1, int y1, int x2, int y2) { int [] pmap = new int [256]; //映射表 if (x1 > 0) { double k1 = y1 / x1; //第1段斜率k1 //按第1段斜率k1线性变换 for ( int i = 0; i <= x1; i++) pmap[i] = ( int )(k1 * i); } double k2 = (y2 - y1) / (x2 - x1); //第2段斜率k2 //按第2段斜率k2线性变换 for ( int i = x1 + 1; i <= x2; i++) if (x2 != x1) pmap[i] = y1 + ( int )(k2 * (i - x1)); else pmap[i] = y1; if (x2 < 255) { double k3 = (255 - y2) / (255 - x2); //第2段斜率k2 //按第3段斜率k3线性变换 for ( int i = x2 + 1; i < 256; i++) pmap[i] = y2 + ( int )(k3 * (i - x2)); } return pmap; } //对比度扩展函数 public bitmap stretch(bitmap bm, int [] map, int iw, int ih) { color c = new color(); int r, g, b; for ( int j = 0; j < ih; j++) { for ( int i = 0; i < iw; i++) { c = bm.getpixel(i, j); r = map[c.r]; g = map[c.g]; b = map[c.b]; if (r >= 255) r = 255; if (r < 0) r = 0; if (g >= 255) g = 255; if (g < 0) g = 0; if (b >= 255) b = 255; if (b < 0) b = 0; bm.setpixel(i, j, color.fromargb(r, g, b)); } } return bm; } private void 直方图均衡化toolstripmenuitem_click( object sender, eventargs e) { if (bitmap != null ) { this .text = " 图像增强 直方图均衡化" ; bitmap bm = new bitmap(picturebox1.image); //获取直方图 int [] hist = gethist(bm, iw, ih); //直方图均匀化 bm = histequal(bm, hist, iw, ih); picturebox2.refresh(); picturebox2.image = bm; label7.text = "直方图均衡化结果" ; flag = true ; } } bool flag = false ; //直方图均衡化标志 //显示直方图 private void 显示直方图toolstripmenuitem_click( object sender, eventargs e) { if (flag) { bitmap b1 = new bitmap(picturebox1.image); bitmap b2 = new bitmap(picturebox2.image); int [] hist1 = gethist(b1, iw, ih); int [] hist2 = gethist(b2, iw, ih); drawhist(hist1, hist2); } } //获取直方图 public int [] gethist(bitmap bm, int iw, int ih) { int [] h = new int [256]; for ( int j = 0; j < ih; j++) { for ( int i = 0; i < iw; i++) { int grey = (bm.getpixel(i, j)).r; h[grey]++; } } return h; } //直方图均衡化 public bitmap histequal(bitmap bm, int [] hist, int iw, int ih) { color c = new color(); double p = ( double )255 / (iw * ih); double [] sum = new double [256]; int [] outg = new int [256]; int r, g, b; sum[0] = hist[0]; for ( int i = 1; i < 256; i++) sum[i] = sum[i - 1] + hist[i]; //灰度变换:i-->outg[i] for ( int i = 0; i < 256; i++) outg[i] = ( int )(p * sum[i]); for ( int j = 0; j < ih; j++) { for ( int i = 0; i < iw; i++) { r = (bm.getpixel(i, j)).r; g = (bm.getpixel(i, j)).g; b = (bm.getpixel(i, j)).b; c = color.fromargb(outg[r], outg[g], outg[b]); bm.setpixel(i, j, c); } } return bm; } public void drawhist( int [] h1, int [] h2) { //画原图直方图------------------------------------------ graphics g = picturebox1.creategraphics(); pen pen1 = new pen(color.blue); g.clear( this .backcolor); //找出最大的数,进行标准化. int maxn = h1[0]; for ( int i = 1; i < 256; i++) if (maxn < h1[i]) maxn = h1[i]; for ( int i = 0; i < 256; i++) h1[i] = h1[i] * 250 / maxn; g.fillrectangle( new solidbrush(color.white), 0, 0, 255, 255); pen1.color = color.red; for ( int i = 0; i < 256; i++) g.drawline(pen1, i, 255, i, 255 - h1[i]); g.drawstring( "" + maxn, this .font, new solidbrush(color.blue), 0, 0); label6.text = "原图直方图" ; //画均衡化后直方图------------------------------------------ g = picturebox2.creategraphics(); pen1 = new pen(color.blue); g.clear( this .backcolor); //找出最大的数,进行标准化. maxn = h2[0]; for ( int i = 1; i < 256; i++) if (maxn < h2[i]) maxn = h2[i]; for ( int i = 0; i < 256; i++) h2[i] = h2[i] * 250 / maxn; g.fillrectangle( new solidbrush(color.white), 0, 0, 255, 255); pen1.color = color.red; for ( int i = 0; i < 256; i++) g.drawline(pen1, i, 255, i, 255 - h2[i]); g.drawstring( "" + maxn, this .font, new solidbrush(color.blue), 0, 0); label7.text = "均衡化后直方图" ; flag = false ; } private void 阈值滤波toolstripmenuitem_click( object sender, eventargs e) { if (bitmap != null ) { this .text = "图像增强 阈值滤波" ; bitmap bm = new bitmap(picturebox1.image); //阈值滤波 bm = threshold(bm, iw, ih); picturebox2.refresh(); picturebox2.image = bm; label7.text = "阈值滤波结果" ; } } //3×3阈值滤波 public bitmap threshold(bitmap bm, int iw, int ih) { bitmap obm = new bitmap(picturebox1.image); int avr, //灰度平均 sum, //灰度和 num = 0, //计数器 nt = 4, //计数器阈值 t = 50; //阈值 int pij, pkl, //(i,j),(i+k,j+l)处灰度值 err; //误差 for ( int j = 1; j < ih - 1; j++) { for ( int i = 1; i < iw - 1; i++) { //取3×3块的9个象素, 求和 sum = 0; for ( int k = -1; k < 2; k++) { for ( int l = -1; l < 2; l++) { if ((k != 0) || (l != 0)) { pkl = (bm.getpixel(i + k, j + l)).r; pij = (bm.getpixel(i, j)).r; err = math.abs(pkl - pij); sum = sum + pkl; if (err > t) num++; } } } avr = ( int )(sum / 8.0f); //平均值 if (num > nt) obm.setpixel(i, j, color.fromargb(avr, avr, avr)); } } return obm; } private void 均值滤波toolstripmenuitem_click( object sender, eventargs e) { if (bitmap != null ) { this .text = "数字图像处理" ; bitmap bm = new bitmap(picturebox1.image); bm = average(bm, iw, ih); picturebox2.refresh(); picturebox2.image = bm; label7.text = "均值滤波结果" ; } } //均值滤波 public bitmap average(bitmap bm, int iw, int ih) { bitmap obm = new bitmap(picturebox1.image); for ( int j = 1; j < ih - 1; j++) { for ( int i = 1; i < iw - 1; i++) { int avr; int avr1; int avr2; int sum = 0; int sum1 = 0; int sum2 = 0; for ( int k = -1; k <= 1; k++) { for ( int l = -1; l <= 1; l++) { sum = sum + (bm.getpixel(i + k, j + 1).r); sum1 = sum1 + (bm.getpixel(i + k, j + 1).g); sum2 = sum2 + (bm.getpixel(i + k, j + 1).b); } } avr = ( int )(sum / 9.0f); avr1 = ( int )(sum1 / 9.0f); avr2 = ( int )(sum2 / 9.0f); obm.setpixel(i, j, color.fromargb(avr, avr1, avr2)); } } return obm; } private void 中值滤波toolstripmenuitem_click( object sender, eventargs e) { if (bitmap != null ) { this .text = "图像增强 中值滤波" ; bitmap bm = new bitmap(picturebox1.image); int num =3; //中值滤波 bm = median(bm, iw, ih, num); picturebox2.refresh(); picturebox2.image = bm; label2.location = new point(370, 280); if (num == 1) label7.text = "1x5窗口滤波结果" ; else if (num == 2) label7.text = "5x1窗口滤波结果" ; else if (num == 3) label7.text = "5x5窗口滤波结果" ; } } //中值滤波方法 public bitmap median(bitmap bm, int iw, int ih, int n) { bitmap obm = new bitmap(picturebox1.image); for ( int j = 2; j < ih - 2; j++) { int [] dt; int [] dt1; int [] dt2; for ( int i = 2; i < iw - 2; i++) { int m = 0, r = 0, r1 = 0, r2 = 0, a = 0, b = 0; if (n == 3) { dt = new int [25]; dt1 = new int [25]; dt2 = new int [25]; //取5×5块的25个象素 for ( int k = -2; k < 3; k++) { for ( int l = -2; l < 3; l++) { //取(i+k,j+l)处的象素,赋于数组dt dt[m] = (bm.getpixel(i + k, j + l)).r; dt1[a] = (bm.getpixel(i + k, j + l)).g; dt2[b] = (bm.getpixel(i + k, j + l)).b; m++; a++; b++; } } //冒泡排序,输出中值 r = median_sorter(dt, 25); //中值 r1 = median_sorter(dt1, 25); r2 = median_sorter(dt2, 25); } else if (n == 1) { dt = new int [5]; //取1×5窗口5个像素 dt[0] = (bm.getpixel(i, j - 2)).r; dt[1] = (bm.getpixel(i, j - 1)).r; dt[2] = (bm.getpixel(i, j)).r; dt[3] = (bm.getpixel(i, j + 1)).r; dt[4] = (bm.getpixel(i, j + 2)).r; r = median_sorter(dt, 5); //中值 dt1 = new int [5]; //取1×5窗口5个像素 dt1[0] = (bm.getpixel(i, j - 2)).g; dt1[1] = (bm.getpixel(i, j - 1)).g; dt1[2] = (bm.getpixel(i, j)).g; dt1[3] = (bm.getpixel(i, j + 1)).g; dt1[4] = (bm.getpixel(i, j + 2)).g; r1 = median_sorter(dt1, 5); //中值 dt2 = new int [5]; //取1×5窗口5个像素 dt2[0] = (bm.getpixel(i, j - 2)).b; dt2[1] = (bm.getpixel(i, j - 1)).b; dt2[2] = (bm.getpixel(i, j)).b; dt2[3] = (bm.getpixel(i, j + 1)).b; dt2[4] = (bm.getpixel(i, j + 2)).b; r2 = median_sorter(dt2, 5); //中值 } else if (n == 2) { dt = new int [5]; //取5×1窗口5个像素 dt[0] = (bm.getpixel(i - 2, j)).r; dt[1] = (bm.getpixel(i - 1, j)).r; dt[2] = (bm.getpixel(i, j)).r; dt[3] = (bm.getpixel(i + 1, j)).r; dt[4] = (bm.getpixel(i + 2, j)).r; r = median_sorter(dt, 5); //中值 dt = new int[5]; //取5×1窗口5个像素 dt1 = new int [5]; dt1[0] = (bm.getpixel(i - 2, j)).g; dt1[1] = (bm.getpixel(i - 1, j)).g; dt1[2] = (bm.getpixel(i, j)).g; dt1[3] = (bm.getpixel(i + 1, j)).g; dt1[4] = (bm.getpixel(i + 2, j)).g; r1 = median_sorter(dt1, 5); //中值 //取5×1窗口5个像素 dt2 = new int [5]; dt2[0] = (bm.getpixel(i - 2, j)).b; dt2[1] = (bm.getpixel(i - 1, j)).b; dt2[2] = (bm.getpixel(i, j)).b; dt2[3] = (bm.getpixel(i + 1, j)).b; dt2[4] = (bm.getpixel(i + 2, j)).b; r2 = median_sorter(dt2, 5); //中值 } obm.setpixel(i, j, color.fromargb(r, r1, r2)); //输出 } } return obm; } //冒泡排序,输出中值 public int median_sorter( int [] dt, int m) { int tem; for ( int k = m - 1; k >= 1; k--) for ( int l = 1; l <= k; l++) if (dt[l - 1] > dt[l]) { tem = dt[l]; dt[l] = dt[l - 1]; dt[l - 1] = tem; } return dt[( int )(m / 2)]; } private void picturebox1_click( object sender, eventargs e) { } private void 图像锐化toolstripmenuitem_click( object sender, eventargs e) { } /* * pix --待检测图像数组 * iw, ih --待检测图像宽高 * num --算子代号.1:kirsch算子;2:laplace算子;3:prewitt算子;5:sobel算子 */ public bitmap detect(bitmap bm, int iw, int ih, int num) { bitmap b1 = new bitmap(picturebox1.image); color c = new color(); int i, j, r; int [,] inr = new int [iw, ih]; //红色分量矩阵 int [,] ing = new int [iw, ih]; //绿色分量矩阵 int [,] inb = new int [iw, ih]; //蓝色分量矩阵 int [,] gray = new int [iw, ih]; //灰度图像矩阵 //转变为灰度图像矩阵 for (j = 0; j < ih; j++) { for (i = 0; i < iw; i++) { c = bm.getpixel(i, j); inr[i, j] = c.r; ing[i, j] = c.g; inb[i, j] = c.b; gray[i, j] = ( int )((c.r + c.g + c.b) / 3.0); } } if (num == 1) //kirsch { int [,] kir0 = {{ 5, 5, 5}, {-3, 0,-3}, {-3,-3,-3}}, //kir0 kir1 = {{-3, 5, 5}, {-3, 0, 5}, {-3,-3,-3}}, //kir1 kir2 = {{-3,-3, 5}, {-3, 0, 5}, {-3,-3, 5}}, //kir2 kir3 = {{-3,-3,-3}, {-3, 0, 5}, {-3, 5, 5}}, //kir3 kir4 = {{-3,-3,-3}, {-3, 0,-3}, { 5, 5, 5}}, //kir4 kir5 = {{-3,-3,-3}, { 5, 0,-3}, { 5, 5,-3}}, //kir5 kir6 = {{ 5,-3,-3}, { 5, 0,-3}, { 5,-3,-3}}, //kir6 kir7 = {{ 5, 5,-3}, { 5, 0,-3}, {-3,-3,-3}}; //kir7 //边缘检测 int [,] edge0 = new int [iw, ih]; int [,] edge1 = new int [iw, ih]; int [,] edge2 = new int [iw, ih]; int [,] edge3 = new int [iw, ih]; int [,] edge4 = new int [iw, ih]; int [,] edge5 = new int [iw, ih]; int [,] edge6 = new int [iw, ih]; int [,] edge7 = new int [iw, ih]; edge0 = edgeenhance(gray, kir0, iw, ih); edge1 = edgeenhance(gray, kir1, iw, ih); edge2 = edgeenhance(gray, kir2, iw, ih); edge3 = edgeenhance(gray, kir3, iw, ih); edge4 = edgeenhance(gray, kir4, iw, ih); edge5 = edgeenhance(gray, kir5, iw, ih); edge6 = edgeenhance(gray, kir6, iw, ih); edge7 = edgeenhance(gray, kir7, iw, ih); int [] tem = new int [8]; int max; for (j = 0; j < ih; j++) { for (i = 0; i < iw; i++) { tem[0] = edge0[i, j]; tem[1] = edge1[i, j]; tem[2] = edge2[i, j]; tem[3] = edge3[i, j]; tem[4] = edge4[i, j]; tem[5] = edge5[i, j]; tem[6] = edge6[i, j]; tem[7] = edge7[i, j]; max = 0; for ( int k = 0; k < 8; k++) if (tem[k] > max) max = tem[k]; if (max > 255) max = 255; r = 255 - max; b1.setpixel(i, j, color.fromargb(r, r, r)); } } } else if (num == 2) //laplace { int [,] lap1 = {{ 1, 1, 1}, { 1,-8, 1}, { 1, 1, 1}}; /*byte[][] lap2 = {{ 0, 1, 0}, { 1,-4, 1}, { 0, 1, 0}}; */ //边缘增强 int [,] edge = edgeenhance(gray, lap1, iw, ih); for (j = 0; j < ih; j++) { for (i = 0; i < iw; i++) { r = edge[i, j]; if (r > 255) r = 255; if (r < 0) r = 0; c = color.fromargb(r, r, r); b1.setpixel(i, j, c); } } } else if (num == 3) //prewitt { //prewitt算子d_x模板 int [,] pre1 = {{ 1, 0,-1}, { 1, 0,-1}, { 1, 0,-1}}; //prewitt算子d_y模板 int [,] pre2 = {{ 1, 1, 1}, { 0, 0, 0}, {-1,-1,-1}}; int [,] edge1 = edgeenhance(gray, pre1, iw, ih); int [,] edge2 = edgeenhance(gray, pre2, iw, ih); for (j = 0; j < ih; j++) { for (i = 0; i < iw; i++) { r = math.max(edge1[i, j], edge2[i, j]); if (r > 255) r = 255; c = color.fromargb(r, r, r); b1.setpixel(i, j, c); } } } else if (num == 5) //sobel { int [,] sob1 = {{ 1, 0,-1}, { 2, 0,-2}, { 1, 0,-1}}; int [,] sob2 = {{ 1, 2, 1}, { 0, 0, 0}, {-1,-2,-1}}, int [,] edge1 = edgeenhance(gray, sob1, iw, ih); int [,] edge2 = edgeenhance(gray, sob2, iw, ih); for (j = 0; j < ih; j++) { for (i = 0; i < iw; i++) { r = math.max(edge1[i, j], edge2[i, j]); if (r > 255) r = 255; c = color.fromargb(r, r, r); b1.setpixel(i, j, c); } } } return b1; } private void kirsch算子锐化toolstripmenuitem_click( object sender, eventargs e) { if (bitmap != null ) { // this.text = " 图像 - 图像锐化 - kirsch算子"; bitmap bm = new bitmap(picturebox1.image); //1: kirsch锐化 bm = detect(bm, iw, ih, 1) picturebox2.refresh(); picturebox2.image = bm; label7.text = " kirsch算子 锐化结果" ; } } public int [,] edgeenhance( int [,] ing, int [,] tmp, int iw, int ih) { int [,] ed = new int [iw, ih]; for ( int j = 1; j < ih - 1; j++) { for ( int i = 1; i < iw - 1; i++) { ed[i, j] = math.abs(tmp[0, 0] * ing[i - 1, j - 1] + tmp[0, 1] * ing[i - 1, j] + tmp[0, 2] * ing[i - 1, j + 1] + tmp[1, 0] * ing[i, j - 1] + tmp[1, 1] * ing[i, j] + tmp[1, 2] * ing[i, j + 1] + tmp[2, 0] * ing[i + 1, j - 1] + tmp[2, 1] * ing[i + 1, j] + tmp[2, 2] * ing[i + 1, j + 1]); } } return ed; } //laplace算子 private void laplace算子锐化toolstripmenuitem_click( object sender, eventargs e) { if (bitmap != null ) { bitmap bm = new bitmap(picturebox1.image); //2: laplace锐化 bm = detect(bm, iw, ih, 2); picturebox2.refresh(); picturebox2.image = bm; label7.text = "laplace算子 锐化结果" ; } } //prewitt算子 private void prewitt算子锐化toolstripmenuitem_click( object sender, eventargs e) { if (bitmap != null ) { bitmap bm = new bitmap(picturebox1.image); //3:prewitt锐化 bm = detect(bm, iw, ih, 3); picturebox2.refresh(); picturebox2.image = bm; label2.location = new point(390, 280); label7.text = " prewitt算子 锐化结果" ; } } //roberts算子 private void roberts算子锐化toolstripmenuitem_click( object sender, eventargs e) { if (bitmap != null ) { bitmap bm = new bitmap(picturebox1.image); //robert边缘检测 bm = robert(bm, iw, ih); picturebox2.refresh(); picturebox2.image = bm; label2.location = new point(390, 280); label7.text = "roberts算子 锐化结果" ; } } //roberts算法 public bitmap robert(bitmap bm, int iw, int ih) { int r, r0, r1, r2, r3, g, g0, g1, g2, g3, b, b0, b1, b2, b3; bitmap obm = new bitmap(picturebox1.image); int [,] inr = new int [iw, ih]; //红色分量矩阵 int [,] ing = new int [iw, ih]; //绿色分量矩阵 int [,] inb = new int [iw, ih]; //蓝色分量矩阵 int [,] gray = new int [iw, ih]; //灰度图像矩阵 for ( int j = 1; j < ih - 1; j++) { for ( int i = 1; i < iw - 1; i++) { r0 = (bm.getpixel(i, j)).r; r1 = (bm.getpixel(i, j + 1)).r; r2 = (bm.getpixel(i + 1, j)).r; r3 = (bm.getpixel(i + 1, j + 1)).r; r = ( int )math.sqrt((r0 - r3) * (r0 - r3) + (r1 - r2) * (r1 - r2)); g0 = (bm.getpixel(i, j)).g; g1 = (bm.getpixel(i, j + 1)).g; g2 = (bm.getpixel(i + 1, j)).g; g3 = (bm.getpixel(i + 1, j + 1)).g; g = ( int )math.sqrt((g0 - g3) * (g0 - g3) + (g1 - g2) * (g1 - g2)); b0 = (bm.getpixel(i, j)).b; b1 = (bm.getpixel(i, j + 1)).b; b2 = (bm.getpixel(i + 1, j)).b; b3 = (bm.getpixel(i + 1, j + 1)).b; b = ( int )math.sqrt((b0 - b3) * (b0 - b3) + (b1 - b2) * (b1 - b2)); if (r < 0) r = 0; //黑色,边缘点 if (r > 255) r = 255; obm.setpixel(i, j, color.fromargb(r, r, r)); } } return obm; } //sobel算子 private void sobel算子锐化toolstripmenuitem_click( object sender, eventargs e) { if (bitmap != null ) { bitmap bm = new bitmap(picturebox1.image); //5: sobel锐化 bm = detect(bm, 256, 256, 5); picturebox2.refresh(); picturebox2.image = bm; label7.text = " sobel算子 锐化结果" ; } } private void 低通滤波toolstripmenuitem_click( object sender, eventargs e) { if (bitmap != null ) { bitmap bm = new bitmap(picturebox1.image); int num ; for (num = 1; num < 4; num++) { //低通滤波 bm = lowpass(bm, iw, ih, num); picturebox2.refresh(); picturebox2.image = bm; if (num == 1) label7.text = "1*5模板低通滤波结果" ; else if (num == 2) label7.text = "5*1模板低通滤波结果" ; else if (num == 3) label7.text = "5*5模板低通滤波结果" ; } } } //3×3低通滤波方法 public bitmap lowpass(bitmap bm, int iw, int ih, int n) { bitmap obm = new bitmap(picturebox1.image); int [,] h; //定义扩展输入图像矩阵 int [,] ex_inpix = exinpix(bm, iw, ih); //低通滤波 for ( int j = 1; j < ih + 1; j++) { for ( int i = 1; i < iw + 1; i++) { int r = 0, sum = 0; //低通模板 h = low_matrix(n); //求3×3窗口9个像素加权和 for ( int k = -1; k < 2; k++) for ( int l = -1; l < 2; l++) sum = sum + h[k + 1, l + 1] * ex_inpix[i + k, j + l]; if (n == 1) r = ( int )(sum / 9); //h1平均值 else if (n == 2) r = ( int )(sum / 10); //h2 else if (n == 3) r = ( int )(sum / 16); //h3 obm.setpixel(i - 1, j - 1, color.fromargb(r, r, r)); //输出 } } return obm; } //定义扩展输入图像矩阵 public int [,] exinpix(bitmap bm, int iw, int ih) { int [,] ex_inpix = new int [iw + 2, ih + 2]; //获取非边界灰度值 for ( int j = 0; j < ih; j++) for ( int i = 0; i < iw; i++) ex_inpix[i + 1, j + 1] = (bm.getpixel(i, j)).r; //四角点处理 ex_inpix[0, 0] = ex_inpix[1, 1]; ex_inpix[0, ih + 1] = ex_inpix[1, ih]; ex_inpix[iw + 1, 0] = ex_inpix[iw, 1]; ex_inpix[iw + 1, ih + 1] = ex_inpix[iw, ih]; //上下边界处理 for ( int j = 1; j < ih + 1; j++) { ex_inpix[0, j] = ex_inpix[1, j]; //上边界 ex_inpix[iw + 1, j] = ex_inpix[iw, j]; //下边界 } //左右边界处理 for ( int i = 1; i < iw + 1; i++) { ex_inpix[i, 0] = ex_inpix[i, 1]; //左边界 ex_inpix[i, ih + 1] = ex_inpix[i, ih]; //右边界 } return ex_inpix; } //低通滤波模板 public int [,] low_matrix( int n) { int [,] h = new int [3, 3]; if (n == 1) //h1 { h[0, 0] = 1; h[0, 1] = 1; h[0, 2] = 1; h[1, 0] = 1; h[1, 1] = 1; h[1, 2] = 1; h[2, 0] = 1; h[2, 1] = 1; h[2, 2] = 1; } else if (n == 2) //h2 { h[0, 0] = 1; h[0, 1] = 1; h[0, 2] = 1; h[1, 0] = 1; h[1, 1] = 2; h[1, 2] = 1; h[2, 0] = 1; h[2, 1] = 1; h[2, 2] = 1; } else if (n == 3) //h3 { h[0, 0] = 1; h[0, 1] = 2; h[0, 2] = 1; h[1, 0] = 2; h[1, 1] = 4; h[1, 2] = 2; h[2, 0] = 1; h[2, 1] = 2; h[2, 2] = 1; } return h; } } } |
六、参考书籍
《c#数字图像处理算法典型实例》
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/Lynn_whu/article/details/80725831