服务器之家:专注于服务器技术及软件下载分享
分类导航

PHP教程|ASP.NET教程|Java教程|ASP教程|编程技术|正则表达式|C/C++|IOS|C#|Swift|Android|VB|R语言|JavaScript|易语言|vb.net|

服务器之家 - 编程语言 - C# - C#实现斐波那契数列的几种方法整理

C#实现斐波那契数列的几种方法整理

2022-03-01 14:16快乐泥巴 C#

这篇文章主要介绍了C#实现斐波那契数列的几种方法整理,主要介绍了递归,循环,公式和矩阵法等,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧

什么是斐波那契数列?经典数学问题之一;斐波那契数列,又称黄金分割数列,指的是这样一个数列:1、1、2、3、5、8、13、21、……想必看到这个数列大家很容易的就推算出来后面好几项的值,那么到底有什么规律,简单说,就是前两项的和是第三项的值,用递归算法计第50位多少。

这个数列从第3项开始,每一项都等于前两项之和。

斐波那契数列:{1,1,2,3,5,8,13,21...}

递归算法,耗时最长的算法,效率很低。

?
1
2
3
4
5
6
public static long CalcA(int n)
{
  if (n <= 0) return 0;
  if (n <= 2) return 1;
  return checked(CalcA(n - 2) + CalcA(n - 1));
}

通过循环来实现

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
public static long CalcB(int n)
{
  if (n <= 0) return 0;
  var a = 1L;
  var b = 1L;
  var result = 1L;
  for (var i = 3; i <= n; i++)
  {
    result = checked(a + b);
    a = b;
    b = result;
  }
  return result;
}

通过循环的改进写法

?
1
2
3
4
5
6
7
8
9
10
11
12
public static long CalcC(int n)
{
  if (n <= 0) return 0;
  var a = 1L;
  var b = 1L;
  for (var i = 3; i <= n; i++)
  {
    b = checked(a + b);
    a = b - a;
  }
  return b;
}

通用公式法

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
/// <summary>
/// F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}
/// </summary>
/// <param name="n"></param>
/// <returns></returns>
public static long CalcD(int n)
{
  if (n <= 0) return 0;
  if (n <= 2) return 1; //加上,可减少运算。
  var a = 1 / Math.Sqrt(5);
  var b = Math.Pow((1 + Math.Sqrt(5)) / 2, n);
  var c = Math.Pow((1 - Math.Sqrt(5)) / 2, n);
  return checked((long)(a * (b - c)));
}

其他方法

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
using System;
using System.Diagnostics;
 
 
namespace Fibonacci
{
  class Program
  {
    static void Main(string[] args)
    {
      ulong result;
 
      int number = 10;
      Console.WriteLine("************* number={0} *************", number);
 
      Stopwatch watch1 = new Stopwatch();
      watch1.Start();
      result = F1(number);
      watch1.Stop();
      Console.WriteLine("F1({0})=" + result + " 耗时:" + watch1.Elapsed, number);
 
      Stopwatch watch2 = new Stopwatch();
      watch2.Start();
      result = F2(number);
      watch2.Stop();
      Console.WriteLine("F2({0})=" + result + " 耗时:" + watch2.Elapsed, number);
 
      Stopwatch watch3 = new Stopwatch();
      watch3.Start();
      result = F3(number);
      watch3.Stop();
      Console.WriteLine("F3({0})=" + result + " 耗时:" + watch3.Elapsed, number);
 
      Stopwatch watch4 = new Stopwatch();
      watch4.Start();
      double result4 = F4(number);
      watch4.Stop();
      Console.WriteLine("F4({0})=" + result4 + " 耗时:" + watch4.Elapsed, number);
 
      Console.WriteLine();
 
      Console.WriteLine("结束");
      Console.ReadKey();
    }
 
    /// <summary>
    /// 迭代法
    /// </summary>
    /// <param name="number"></param>
    /// <returns></returns>
    private static ulong F1(int number)
    {
      if (number == 1 || number == 2)
      {
        return 1;
      }
      else
      {
        return F1(number - 1) + F1(number - 2);
      }
      
    }
 
    /// <summary>
    /// 直接法
    /// </summary>
    /// <param name="number"></param>
    /// <returns></returns>
    private static ulong F2(int number)
    {
      ulong a = 1, b = 1;
      if (number == 1 || number == 2)
      {
        return 1;
      }
      else
      {
        for (int i = 3; i <= number; i++)
        {
          ulong c = a + b;
          b = a;
          a = c;
        }
        return a;
      }
    }
 
    /// <summary>
    /// 矩阵法
    /// </summary>
    /// <param name="n"></param>
    /// <returns></returns>
    static ulong F3(int n)
    {
      ulong[,] a = new ulong[2, 2] { { 1, 1 }, { 1, 0 } };
      ulong[,] b = MatirxPower(a, n);
      return b[1, 0];
    }
 
    #region F3
    static ulong[,] MatirxPower(ulong[,] a, int n)
    {
      if (n == 1) { return a; }
      else if (n == 2) { return MatirxMultiplication(a, a); }
      else if (n % 2 == 0)
      {
        ulong[,] temp = MatirxPower(a, n / 2);
        return MatirxMultiplication(temp, temp);
      }
      else
      {
        ulong[,] temp = MatirxPower(a, n / 2);
        return MatirxMultiplication(MatirxMultiplication(temp, temp), a);
      }
    }
 
    static ulong[,] MatirxMultiplication(ulong[,] a, ulong[,] b)
    {
      ulong[,] c = new ulong[2, 2];
      for (int i = 0; i < 2; i++)
      {
        for (int j = 0; j < 2; j++)
        {
          for (int k = 0; k < 2; k++)
          {
            c[i, j] += a[i, k] * b[k, j];
          }
        }
      }
      return c;
    }
    #endregion
 
    /// <summary>
    /// 通项公式法
    /// </summary>
    /// <param name="n"></param>
    /// <returns></returns>
    static double F4(int n)
    {
      double sqrt5 = Math.Sqrt(5);
      return (1/sqrt5*(Math.Pow((1+sqrt5)/2,n)-Math.Pow((1-sqrt5)/2,n)));
    }
  }
}

OK,就这些了。用的long类型来存储结果,当n>92时会内存溢出。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。

原文链接:https://www.jianshu.com/p/31b783e3eb46

延伸 · 阅读

精彩推荐
  • C#C#实现XML文件读取

    C#实现XML文件读取

    这篇文章主要为大家详细介绍了C#实现XML文件读取的相关代码,具有一定的参考价值,感兴趣的小伙伴们可以参考一下...

    Just_for_Myself6702022-02-22
  • C#C#通过KD树进行距离最近点的查找

    C#通过KD树进行距离最近点的查找

    这篇文章主要为大家详细介绍了C#通过KD树进行距离最近点的查找,具有一定的参考价值,感兴趣的小伙伴们可以参考一下...

    帆帆帆6112022-01-22
  • C#C# 实现对PPT文档加密、解密及重置密码的操作方法

    C# 实现对PPT文档加密、解密及重置密码的操作方法

    这篇文章主要介绍了C# 实现对PPT文档加密、解密及重置密码的操作方法,非常不错,具有参考借鉴价值,需要的朋友可以参考下...

    E-iceblue5012022-02-12
  • C#C#裁剪,缩放,清晰度,水印处理操作示例

    C#裁剪,缩放,清晰度,水印处理操作示例

    这篇文章主要为大家详细介绍了C#裁剪,缩放,清晰度,水印处理操作示例,具有一定的参考价值,感兴趣的小伙伴们可以参考一下...

    吴 剑8332021-12-08
  • C#WPF 自定义雷达图开发实例教程

    WPF 自定义雷达图开发实例教程

    这篇文章主要介绍了WPF 自定义雷达图开发实例教程,本文介绍的非常详细,具有参考借鉴价值,需要的朋友可以参考下...

    WinterFish13112021-12-06
  • C#深入解析C#中的交错数组与隐式类型的数组

    深入解析C#中的交错数组与隐式类型的数组

    这篇文章主要介绍了深入解析C#中的交错数组与隐式类型的数组,隐式类型的数组通常与匿名类型以及对象初始值设定项和集合初始值设定项一起使用,需要的...

    C#教程网6172021-11-09
  • C#C#设计模式之Visitor访问者模式解决长隆欢乐世界问题实例

    C#设计模式之Visitor访问者模式解决长隆欢乐世界问题实例

    这篇文章主要介绍了C#设计模式之Visitor访问者模式解决长隆欢乐世界问题,简单描述了访问者模式的定义并结合具体实例形式分析了C#使用访问者模式解决长...

    GhostRider9502022-01-21
  • C#Unity3D实现虚拟按钮控制人物移动效果

    Unity3D实现虚拟按钮控制人物移动效果

    这篇文章主要为大家详细介绍了Unity3D实现虚拟按钮控制人物移动效果,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一...

    shenqingyu060520232410972022-03-11