一、方法2
此方法是两个表构建某一相同字段,然后全连接,在做匹配结果筛选,此方法针对数据量不大的时候,逻辑比较简单,但是内存消耗较大
1. 导入库
import pandas as pd import numpy as np import re
2. 构建关键词
#关键词数据 df_keyword = pd.DataFrame({ "keyid" : np.arange(5), "keyword" : ["numpy", "pandas", "matplotlib", "sklearn", "tensorflow"] }) df_keyword
3. 构建句子
df_sentence = pd.DataFrame({ "senid" : np.arange(10,17), "sentence" : [ "怎样用pandas实现merge?", "Python之Numpy详细教程", "怎么使用Pandas批量拆分与合并Excel文件?", "怎样使用pandas的map和apply函数?", "深度学习之tensorflow简介", "tensorflow和numpy的关系", "基于sklearn的一些机器学习的代码" ] }) df_sentence
4. 建立统一索引
df_keyword['match'] = 1 df_sentence['match'] = 1
5. 表连接
df_merge = pd.merge(df_keyword, df_sentence) df_merge
6. 关键词匹配
def match_func(row): return re.search(row["keyword"], row["sentence"], re.IGNORECASE) is not None df_merge[df_merge.apply(match_func, axis = 1)]
匹配结果如下
二、方法2
此方法对编程能力有要求,在大数据集上计算量较方法一小很多
1. 构建字典
key_word_dict = { row.keyword : row.keyid for row in df_keyword.itertuples() } key_word_dict
{'numpy': 0, 'pandas': 1, 'matplotlib': 2, 'sklearn': 3, 'tensorflow': 4}
2. 关键词匹配
def merge_func(row): #新增一列,表示可以匹配的keyid row["keyids"] = [ keyid for key_word, keyid in key_word_dict.items() if re.search(key_word, row["sentence"], re.IGNORECASE) ] return row df_merge = df_sentence.apply(merge_func, axis = 1)
3. 结果展示
df_merge
4. 匹配结果展开
df_result = pd.merge( left = df_merge.explode("keyids"), right = df_keyword, left_on = "keyids", right_on = "keyid") df_result
总结
到此这篇关于Python Pandas两个表格内容模糊匹配搜索服务器之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持服务器之家!
原文链接:https://blog.csdn.net/weixin_43734080/article/details/121228769