脚本之家,脚本语言编程技术及教程分享平台!
分类导航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服务器之家 - 脚本之家 - Python - Python机器学习NLP自然语言处理基本操作精确分词

Python机器学习NLP自然语言处理基本操作精确分词

2022-01-10 00:01我是小白呀 Python

本文是Python机器学习NLP自然语言处理系列文章,带大家开启一段学习自然语言处理 (NLP) 的旅程. 本文主要学习NLP自然语言处理基本操作之如何精确分词

 

概述

从今天开始我们将开启一段自然语言处理 (NLP) 的旅程. 自然语言处理可以让来处理, 理解, 以及运用人类的语言, 实现机器语言和人类语言之间的沟通桥梁.

Python机器学习NLP自然语言处理基本操作精确分词

 

分词器 jieba

jieba 算法基于前缀词典实现高效的词图扫描, 生成句子中汉字所有可能成词的情况所构成的有向无环图. 通过动态规划查找最大概率路径, 找出基于词频的最大切分组合. 对于未登录词采用了基于汉字成词能力的 HMM 模型, 使用 Viterbi 算法.

Python机器学习NLP自然语言处理基本操作精确分词

 

安装

pip install jieba

Python机器学习NLP自然语言处理基本操作精确分词

查看是否安装成功:

import jieba
print(jieba.__version__)

输出结果:

0.42.1

 

精确分词

精确分词: 精确模式试图将句子最精确地切开, 精确分词也是默认分词.

Python机器学习NLP自然语言处理基本操作精确分词

格式:

jieba.cut(content, cut_all=False)

参数:

  • content: 需要分词的内容
  • cut_all: 如果为 True 则为全模式, False 为精确模式

例子:

import jieba
# 定义文本
content = "自然语言处理是人工智能和语言学领域的分支学科。此领域探讨如何处理及运用自然语言;自然语言处理包括多方面和步骤,基本有认知、理解、生成等部分。"
# 精确分词
seg = jieba.cut(content, cut_all=False)
# 调试输出
print([word for word in seg])

输出结果:

Building prefix dict from the default dictionary ...
Loading model from cache C:UsersWindowsAppDataLocalTempjieba.cache
Loading model cost 0.984 seconds.
Prefix dict has been built successfully.
["自然语言", "处理", "是", "人工智能", "和", "语言学", "领域", "的", "分支", "学科", "。", "此", "领域", "探讨", "如何", "处理", "及", "运用", "自然语言", ";", "自然语言", "处理", "包括", "多方面", "和", "步骤", ",", "基本", "有", "认知", "、", "理解", "、", "生成", "等", "部分", "。"]

 

全模式

全模式分词: 全模式会把句子中所有可能是词语的都扫出来. 速度非常快, 但不能解决歧义问题.

例子:

C:UsersWindowsAnaconda3pythonw.exe "C:/Users/Windows/Desktop/project/NLP 基础/结巴.py"
Building prefix dict from the default dictionary ...
Loading model from cache C:UsersWindowsAppDataLocalTempjieba.cache
["自然", "自然语言", "语言", "处理", "是", "人工", "人工智能", "智能", "和", "语言", "语言学", "领域", "的", "分支", "学科", "。", "此", "领域", "探讨", "如何", "何处", "处理", "及", "运用", "自然", "自然语言", "语言", ";", "自然", "自然语言", "语言", "处理", "包括", "多方", "多方面", "方面", "和", "步骤", ",", "基本", "有", "认知", "、", "理解", "、", "生成", "等", "部分", "。"]
Loading model cost 0.999 seconds.
Prefix dict has been built successfully.

输出结果:

Building prefix dict from the default dictionary ...
Loading model from cache C:UsersWindowsAppDataLocalTempjieba.cache
["自然", "自然语言", "语言", "处理", "是", "人工", "人工智能", "智能", "和", "语言", "语言学", "领域", "的", "分支", "学科", "。", "此", "领域", "探讨", "如何", "何处", "处理", "及", "运用", "自然", "自然语言", "语言", ";", "自然", "自然语言", "语言", "处理", "包括", "多方", "多方面", "方面", "和", "步骤", ",", "基本", "有", "认知", "、", "理解", "、", "生成", "等", "部分", "。"]
Loading model cost 0.999 seconds.
Prefix dict has been built successfully.

 

搜索引擎模式

搜索引擎模式: 在精确模式的基础上, 对长词再次切分. 提高召回率, 适合用于搜索引擎分词.

Python机器学习NLP自然语言处理基本操作精确分词

例子:

import jieba
# 定义文本
content = "自然语言处理是人工智能和语言学领域的分支学科。此领域探讨如何处理及运用自然语言;自然语言处理包括多方面和步骤,基本有认知、理解、生成等部分。"
# 搜索引擎模式
seg = jieba.cut_for_search(content)
# 调试输出
print([word for word in seg])

输出结果:

Building prefix dict from the default dictionary ...
Loading model from cache C:UsersWindowsAppDataLocalTempjieba.cache
[("自然语言", "l"), ("处理", "v"), ("是", "v"), ("人工智能", "n"), ("和", "c"), ("语言学", "n"), ("领域", "n"), ("的", "uj"), ("分支", "n"), ("学科", "n"), ("。", "x"), ("此", "zg"), ("领域", "n"), ("探讨", "v"), ("如何", "r"), ("处理", "v"), ("及", "c"), ("运用", "vn"), ("自然语言", "l"), (";", "x"), ("自然语言", "l"), ("处理", "v"), ("包括", "v"), ("多方面", "m"), ("和", "c"), ("步骤", "n"), (",", "x"), ("基本", "n"), ("有", "v"), ("认知", "v"), ("、", "x"), ("理解", "v"), ("、", "x"), ("生成", "v"), ("等", "u"), ("部分", "n"), ("。", "x")]
Loading model cost 1.500 seconds.
Prefix dict has been built successfully.

 

获取词性

通过 jieba.posseg 模式实现词性标注.

import jieba.posseg as psg
# 定义文本
content = "自然语言处理是人工智能和语言学领域的分支学科。此领域探讨如何处理及运用自然语言;自然语言处理包括多方面和步骤,基本有认知、理解、生成等部分。"
# 分词
seg = psg.lcut(content)
# 获取词性
part_of_speech = [(x.word, x.flag) for x in seg]
# 调试输出
print(part_of_speech)

输出结果:

Building prefix dict from the default dictionary ...
Loading model from cache C:UsersWindowsAppDataLocalTempjieba.cache
[("自然语言", "l"), ("处理", "v"), ("是", "v"), ("人工智能", "n"), ("和", "c"), ("语言学", "n"), ("领域", "n"), ("的", "uj"), ("分支", "n"), ("学科", "n"), ("。", "x"), ("此", "zg"), ("领域", "n"), ("探讨", "v"), ("如何", "r"), ("处理", "v"), ("及", "c"), ("运用", "vn"), ("自然语言", "l"), (";", "x"), ("自然语言", "l"), ("处理", "v"), ("包括", "v"), ("多方面", "m"), ("和", "c"), ("步骤", "n"), (",", "x"), ("基本", "n"), ("有", "v"), ("认知", "v"), ("、", "x"), ("理解", "v"), ("、", "x"), ("生成", "v"), ("等", "u"), ("部分", "n"), ("。", "x")]
Loading model cost 1.500 seconds.
Prefix dict has been built successfully.

以上就是Python机器学习NLP自然语言处理基本操作之精确分词的详细内容,更多关于Python机器学习NLP自然语言处理的资料请关注服务器之家其它相关文章!

原文链接:https://blog.csdn.net/weixin_46274168/article/details/120107261

延伸 · 阅读

精彩推荐