脚本之家,脚本语言编程技术及教程分享平台!
分类导航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服务器之家 - 脚本之家 - Python - Python中的np.argmin()和np.argmax()函数用法

Python中的np.argmin()和np.argmax()函数用法

2021-11-21 11:46JZJZY Python

这篇文章主要介绍了Python中的np.argmin()和np.argmax()函数用法,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

Python np.argmin()和np.argmax()函数

按照axis的要求返回最小的数/最大的数的下标

?
1
2
numpy.argmin(a, axis=None, out=None)
numpy.argmax(a, axis=None, out=None)

a:传入一个数组,

axis:默认将输入数组展平,否则,按照axis方向

out:可选

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
import numpy as np
a = np.arange(6).reshape(2, 3)
a
array([[0, 1, 2],
       [3, 4, 5]])
 
# 此时自动展平了
np.argmin(a)
0
np.argmax(a)
5
# 在axis方向上找最小的值并返回坐标
np.argmin(a, axis=1)
array([0, 0], dtype=int64)
 
# 在axis方向上找最大的值并返回坐标
np.argmax(a, axis=1)
array([2, 2], dtype=int64)

当有多个最小值的时候只显示第一个

?
1
2
3
4
5
6
7
8
a = np.arange(6)
a[4] = 0
a
 
array([0, 1, 2, 3, 0, 5])
 
np.argmin(a)
0

Python基础——min/max与np.argmin/np.argmax

这里应该是拿min/max(更适合处理可迭代对象,可选的参数是key=func)与np.min/np.max(可适合处理numpy.ndarray对象,可选的参数是axis=0或者1)作比较,只不过np.argmin/np.argmax的用法与np.min/np.max相似,这里就不进行更正了。

首先min/max与np.argmin/np.argmax函数的功能不同

前者返回值,后者返回最值所在的索引(下标)

处理的对象不同

前者跟适合处理list等可迭代对象,而后者自然是numpy里的核心数据结构ndarray(多维数组)

min/max是python内置的函数

np.argmin/np.argmax是numpy库中的成员函数

接口不同

?
1
2
min(iterable, key=func)->value
np.argmin(a, axis=None)

常见的接口如上所示,前者除了一个可迭代对象外,还接收一个函数对象(keyword argument),用于指定比较的对象(也即最值比较的内容是,将迭代对象中的元素逐个赋予func函数对象所得到返回值),可见func只可接受一个参数,如min(dict, key=dict.get)。

而np.argmax更多的是进行轴上的比较(axis=0,也是默认的轴,是列向)

?
1
2
3
4
5
6
7
8
9
10
>>> l = ['1', '100', '111', '2']
>>> max(l)
'2'
# 下面我们指定比较内容
>>> max(l, key=lambda x: int(x)
'111'
>>> max(l, key=lambda x: len(x))
'100'
>>> max(l, key=lambda x: len(x) and int(x))
'111'

我们也可将min/max作用于list of lists(这里不对tuple和list作区分):

?
1
2
>>> ll = [(1, 'a'), (3, 'c'), (4, 'e'), (-1, 'z')]
>>> max(ll)

例如根据列表中的每一个元素(tuple或者list类型)的第二位进行求最大值:

?
1
2
3
4
5
>>> l = [(1, 2, 5), (2, 3, 5), (3, 2, 5), (4, 4, 5), (5, 1, 5)]
>>> max(l, key=lambda x: x[1])
(4, 4, 5)
>>> l.index(max(l, key=lambda x: x[1]))
3

默认情况下,max首先进行比较的是items(k,v)中的第一个内容(也即是k),相等的情况下,再进行v的比较。

稍作修改,我们便可实现对v的比较:

?
1
2
>>> max(ll, key=lambda x: x[1])
(-1, 'z')

有时可能最值所在的下标对我们更重要,我们据此下标索引更为丰富的信息。如何不显式转化为numpy.ndarray类型(有时也无法转换,当异质容器时)不通过np.argmax这样的函数获得最值(任何值都可以)所在的下标呢?使用list(tuple)的index()成员函数。

?
1
2
3
4
>>> ll = [(1, 'a'), (3, 'c'), (4, 'e'), (-1, 'z')]
>>> val = max(ll, lambda x: x[1])
>>> ll.index(val)
3

根据以上用法,我们也可推测并实现一个精简版的max函数:

?
1
2
3
4
5
6
def max(items, key=lambda x: x):
    current = items[0]
    for item in items:
        if key(item) > key(current):
            current = item
    return current

以上为个人经验,希望能给大家一个参考,也希望大家多多支持服务器之家。

原文链接:https://hnuysylps.blog.csdn.net/article/details/103190408

延伸 · 阅读

精彩推荐