batch的lstm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
|
# 导入相应的包 import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torch.utils.data as Data torch.manual_seed( 1 ) # 准备数据的阶段 def prepare_sequence(seq, to_ix): idxs = [to_ix[w] for w in seq] return torch.tensor(idxs, dtype = torch. long ) with open ( "/home/lstm_train.txt" , encoding = 'utf8' ) as f: train_data = [] word = [] label = [] data = f.readline().strip() while data: data = data.strip() SP = data.split( ' ' ) if len (SP) = = 2 : word.append(SP[ 0 ]) label.append(SP[ 1 ]) else : if len (word) = = 100 and 'I-PRO' in label: train_data.append((word, label)) word = [] label = [] data = f.readline() word_to_ix = {} for sent, _ in train_data: for word in sent: if word not in word_to_ix: word_to_ix[word] = len (word_to_ix) tag_to_ix = { "O" : 0 , "I-PRO" : 1 } for i in range ( len (train_data)): train_data[i] = ([word_to_ix[t] for t in train_data[i][ 0 ]], [tag_to_ix[t] for t in train_data[i][ 1 ]]) # 词向量的维度 EMBEDDING_DIM = 128 # 隐藏层的单元数 HIDDEN_DIM = 128 # 批大小 batch_size = 10 class LSTMTagger(nn.Module): def __init__( self , embedding_dim, hidden_dim, vocab_size, tagset_size, batch_size): super (LSTMTagger, self ).__init__() self .hidden_dim = hidden_dim self .batch_size = batch_size self .word_embeddings = nn.Embedding(vocab_size, embedding_dim) # The LSTM takes word embeddings as inputs, and outputs hidden states # with dimensionality hidden_dim. self .lstm = nn.LSTM(embedding_dim, hidden_dim, batch_first = True ) # The linear layer that maps from hidden state space to tag space self .hidden2tag = nn.Linear(hidden_dim, tagset_size) def forward( self , sentence): embeds = self .word_embeddings(sentence) # input_tensor = embeds.view(self.batch_size, len(sentence) // self.batch_size, -1) lstm_out, _ = self .lstm(embeds) tag_space = self .hidden2tag(lstm_out) scores = F.log_softmax(tag_space, dim = 2 ) return scores def predict( self , sentence): embeds = self .word_embeddings(sentence) lstm_out, _ = self .lstm(embeds) tag_space = self .hidden2tag(lstm_out) scores = F.log_softmax(tag_space, dim = 2 ) return scores loss_function = nn.NLLLoss() model = LSTMTagger(EMBEDDING_DIM, HIDDEN_DIM, len (word_to_ix), len (tag_to_ix), batch_size) optimizer = optim.SGD(model.parameters(), lr = 0.1 ) data_set_word = [] data_set_label = [] for data_tuple in train_data: data_set_word.append(data_tuple[ 0 ]) data_set_label.append(data_tuple[ 1 ]) torch_dataset = Data.TensorDataset(torch.tensor(data_set_word, dtype = torch. long ), torch.tensor(data_set_label, dtype = torch. long )) # 把 dataset 放入 DataLoader loader = Data.DataLoader( dataset = torch_dataset, # torch TensorDataset format batch_size = batch_size, # mini batch size shuffle = True , # num_workers = 2 , # 多线程来读数据 ) # 训练过程 for epoch in range ( 200 ): for step, (batch_x, batch_y) in enumerate (loader): # 梯度清零 model.zero_grad() tag_scores = model(batch_x) # 计算损失 tag_scores = tag_scores.view( - 1 , tag_scores.shape[ 2 ]) batch_y = batch_y.view(batch_y.shape[ 0 ] * batch_y.shape[ 1 ]) loss = loss_function(tag_scores, batch_y) print (loss) # 后向传播 loss.backward() # 更新参数 optimizer.step() # 测试过程 with torch.no_grad(): inputs = torch.tensor([data_set_word[ 0 ]], dtype = torch. long ) print (inputs) tag_scores = model.predict(inputs) print (tag_scores.shape) print (torch.argmax(tag_scores, dim = 2 )) |
补充:PyTorch基础-使用LSTM神经网络实现手写数据集识别
看代码吧~
1
2
3
4
5
6
|
import numpy as np import torch from torch import nn,optim from torch.autograd import Variable from torchvision import datasets,transforms from torch.utils.data import DataLoader |
1
2
3
4
5
6
7
8
9
10
11
12
|
# 训练集 train_data = datasets.MNIST(root = "./" , # 存放位置 train = True , # 载入训练集 transform = transforms.ToTensor(), # 把数据变成tensor类型 download = True # 下载 ) # 测试集 test_data = datasets.MNIST(root = "./" , train = False , transform = transforms.ToTensor(), download = True ) |
1
2
3
4
5
6
|
# 批次大小 batch_size = 64 # 装载训练集 train_loader = DataLoader(dataset = train_data,batch_size = batch_size,shuffle = True ) # 装载测试集 test_loader = DataLoader(dataset = test_data,batch_size = batch_size,shuffle = True ) |
1
2
3
4
5
|
for i,data in enumerate (train_loader): inputs,labels = data print (inputs.shape) print (labels.shape) break |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
|
# 定义网络结构 class LSTM(nn.Module): def __init__( self ): super (LSTM, self ).__init__() # 初始化 self .lstm = torch.nn.LSTM( input_size = 28 , # 表示输入特征的大小 hidden_size = 64 , # 表示lstm模块的数量 num_layers = 1 , # 表示lstm隐藏层的层数 batch_first = True # lstm默认格式input(seq_len,batch,feature)等于True表示input和output变成(batch,seq_len,feature) ) self .out = torch.nn.Linear(in_features = 64 ,out_features = 10 ) self .softmax = torch.nn.Softmax(dim = 1 ) def forward( self ,x): # (batch,seq_len,feature) x = x.view( - 1 , 28 , 28 ) # output:(batch,seq_len,hidden_size)包含每个序列的输出结果 # 虽然lstm的batch_first为True,但是h_n,c_n的第0个维度还是num_layers # h_n :[num_layers,batch,hidden_size]只包含最后一个序列的输出结果 # c_n:[num_layers,batch,hidden_size]只包含最后一个序列的输出结果 output,(h_n,c_n) = self .lstm(x) output_in_last_timestep = h_n[ - 1 ,:,:] x = self .out(output_in_last_timestep) x = self .softmax(x) return x |
1
2
3
4
5
6
|
# 定义模型 model = LSTM() # 定义代价函数 mse_loss = nn.CrossEntropyLoss() # 交叉熵 # 定义优化器 optimizer = optim.Adam(model.parameters(),lr = 0.001 ) # 随机梯度下降 |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
|
# 定义模型训练和测试的方法 def train(): # 模型的训练状态 model.train() for i,data in enumerate (train_loader): # 获得一个批次的数据和标签 inputs,labels = data # 获得模型预测结果(64,10) out = model(inputs) # 交叉熵代价函数out(batch,C:类别的数量),labels(batch) loss = mse_loss(out,labels) # 梯度清零 optimizer.zero_grad() # 计算梯度 loss.backward() # 修改权值 optimizer.step() def test(): # 模型的测试状态 model. eval () correct = 0 # 测试集准确率 for i,data in enumerate (test_loader): # 获得一个批次的数据和标签 inputs,labels = data # 获得模型预测结果(64,10) out = model(inputs) # 获得最大值,以及最大值所在的位置 _,predicted = torch. max (out, 1 ) # 预测正确的数量 correct + = (predicted = = labels). sum () print ( "Test acc:{0}" . format (correct.item() / len (test_data))) correct = 0 for i,data in enumerate (train_loader): # 训练集准确率 # 获得一个批次的数据和标签 inputs,labels = data # 获得模型预测结果(64,10) out = model(inputs) # 获得最大值,以及最大值所在的位置 _,predicted = torch. max (out, 1 ) # 预测正确的数量 correct + = (predicted = = labels). sum () print ( "Train acc:{0}" . format (correct.item() / len (train_data))) |
1
2
3
4
5
|
# 训练 for epoch in range ( 10 ): print ( "epoch:" ,epoch) train() test() |
以上为个人经验,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/weixin_40939578/article/details/104462188