一、推理原理
1.标定噪声的特征,使用cv2.inRange二值化标识噪声对图片进行二值化处理,具体代码:cv2.inRange(img, np.array([200, 200, 240]), np.array([255, 255, 255])),把[200, 200, 200]~[255, 255, 255]以外的颜色处理为0
2.使用OpenCV的dilate方法,扩展特征的区域,优化图片处理效果
3.使用inpaint方法,把噪声的mask作为参数,推理并修复图片
二、推理步骤
1.从源图片,截取右下角部分,另存为新图片
2.识别水印,颜色值为:[200, 200, 200]~[255, 255, 255]
3.去掉水印,还原图片
4.把源图片、去掉水印的新图片,进行重叠合并
三、参考代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
|
import cv2 import numpy as np from PIL import Image import os dir = os.getcwd() path = "1.jpg" newPath = "new.jpg" img = cv2.imread(path, 1 ) hight,width,depth = img.shape[ 0 : 3 ] #截取 cropped = img[ int (hight * 0.8 ):hight, int (width * 0.7 ):width] # 裁剪坐标为[y0:y1, x0:x1] cv2.imwrite(newPath, cropped) imgSY = cv2.imread(newPath, 1 ) #图片二值化处理,把[200,200,200]-[250,250,250]以外的颜色变成0 thresh = cv2.inRange(imgSY,np.array([ 200 , 200 , 200 ]),np.array([ 250 , 250 , 250 ])) #创建形状和尺寸的结构元素 kernel = np.ones(( 3 , 3 ),np.uint8) #扩展待修复区域 hi_mask = cv2.dilate(thresh,kernel,iterations = 10 ) specular = cv2.inpaint(imgSY,hi_mask, 5 ,flags = cv2.INPAINT_TELEA) cv2.imwrite(newPath, specular) #覆盖图片 imgSY = Image. open (newPath) img = Image. open (path) img.paste(imgSY, ( int (width * 0.7 ), int (hight * 0.8 ),width,hight)) img.save(newPath) import cv2 import numpy as np from PIL import Image import os dir = os.getcwd() path = "1.jpg" newPath = "new.jpg" img = cv2.imread(path, 1 ) hight,width,depth = img.shape[ 0 : 3 ] #截取 cropped = img[ int (hight * 0.8 ):hight, int (width * 0.7 ):width] # 裁剪坐标为[y0:y1, x0:x1] cv2.imwrite(newPath, cropped) imgSY = cv2.imread(newPath, 1 ) #图片二值化处理,把[200,200,200]-[250,250,250]以外的颜色变成0 thresh = cv2.inRange(imgSY,np.array([ 200 , 200 , 200 ]),np.array([ 250 , 250 , 250 ])) #创建形状和尺寸的结构元素 kernel = np.ones(( 3 , 3 ),np.uint8) #扩展待修复区域 hi_mask = cv2.dilate(thresh,kernel,iterations = 10 ) specular = cv2.inpaint(imgSY,hi_mask, 5 ,flags = cv2.INPAINT_TELEA) cv2.imwrite(newPath, specular) #覆盖图片 imgSY = Image. open (newPath) img = Image. open (path) img.paste(imgSY, ( int (width * 0.7 ), int (hight * 0.8 ),width,hight)) img.save(newPath) |
四、效果图
没去水印前:
去了后:
到此这篇关于利用Python+OpenCV三步去除水印的文章就介绍到这了,更多相关Python+OpenCV去水印内容请搜索服务器之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持服务器之家!
原文链接:https://blog.csdn.net/yunyun889901/article/details/117293044