一、实例演示
1.将一个大Excel等份拆成多个Excel
2.将多个小Excel合并成一个大Excel并标记来源
1
2
3
4
5
6
|
work_dir = "./course_datas/c15_excel_split_merge" splits_dir = f "{work_dir}/splits" import os if not os.path.exists(splits_dir): os.mkdir(splits_dir) |
二、读取源Excel到Pandas
1
2
|
import pandas as pd No output |
1
2
|
df_source = pd.read_excel(f "{work_dir}/crazyant_blog_articles_source.xlsx" ) No output |
1
|
df_source.head() |
1
2
3
4
5
6
|
id title tags 0 2585 Tensorflow怎样接收变长列表特征 python,tensorflow,特征工程 1 2583 Pandas实现数据的合并concat pandas,python,数据分析 2 2574 Pandas的Index索引有什么用途? pandas,python,数据分析 3 2564 机器学习常用数据集大全 python,机器学习 4 2561 一个数据科学家的修炼路径 数据分析 |
1
|
df_source.index |
1
|
RangeIndex(start = 0 , stop = 258 , step = 1 ) |
1
|
df_source.shape |
(258, 3)
1
2
|
total_row_count = df_source.shape[ 0 ] total_row_count |
258
三、将一个大Excel等份拆成多个Excel
1.使用df.iloc方法,将一个大的dataframe,拆分成多个小dataframe
2.将使用dataframe.to_excel保存每个小Excel
1、计算拆分后的每个excel的行数
1
2
3
|
# 这个大excel,会拆分给这几个人 user_names = [ "xiao_shuai" , "xiao_wang" , "xiao_ming" , "xiao_lei" , "xiao_bo" , "xiao_hong" ] No output |
1
2
3
4
5
6
|
# 每个人的任务数目 split_size = total_row_count / / len (user_names) if total_row_count % len (user_names) ! = 0 : split_size + = 1 split_size |
43
2、拆分成多个dataframe
1
2
3
4
5
6
7
8
9
10
11
|
df_subs = [] for idx, user_name in enumerate (user_names): # iloc的开始索引 begin = idx * split_size # iloc的结束索引 end = begin + split_size # 实现df按照iloc拆分 df_sub = df_source.iloc[begin:end] # 将每个子df存入列表 df_subs.append((idx, user_name, df_sub)) No output |
3、将每个datafame存入excel
1
2
3
4
|
for idx, user_name, df_sub in df_subs: file_name = f "{splits_dir}/crazyant_blog_articles_{idx}_{user_name}.xlsx" df_sub.to_excel(file_name, index = False ) No output |
四、合并多个小Excel到一个大Excel
1.遍历文件夹,得到要合并的Excel文件列表
2.分别读取到dataframe,给每个df添加一列用于标记来源
3.使用pd.concat进行df批量合并
4.将合并后的dataframe输出到excel
1. 遍历文件夹,得到要合并的Excel名称列表
1
2
3
4
5
|
import os excel_names = [] for excel_name in os.listdir(splits_dir): excel_names.append(excel_name) excel_names |
['crazyant_blog_articles_0_xiao_shuai.xlsx',
'crazyant_blog_articles_1_xiao_wang.xlsx',
'crazyant_blog_articles_2_xiao_ming.xlsx',
'crazyant_blog_articles_3_xiao_lei.xlsx',
'crazyant_blog_articles_4_xiao_bo.xlsx',
'crazyant_blog_articles_5_xiao_hong.xlsx']
2. 分别读取到dataframe
df_list = []
1
2
3
4
5
6
7
8
9
10
11
|
for excel_name in excel_names: # 读取每个excel到df excel_path = f "{splits_dir}/{excel_name}" df_split = pd.read_excel(excel_path) # 得到username username = excel_name.replace( "crazyant_blog_articles_" , " ").replace(" .xlsx ", " ")[ 2 :] print (excel_name, username) # 给每个df添加1列,即用户名字 df_split[ "username" ] = username df_list.append(df_split) |
crazyant_blog_articles_0_xiao_shuai.xlsx xiao_shuai
crazyant_blog_articles_1_xiao_wang.xlsx xiao_wang
crazyant_blog_articles_2_xiao_ming.xlsx xiao_ming
crazyant_blog_articles_3_xiao_lei.xlsx xiao_lei
crazyant_blog_articles_4_xiao_bo.xlsx xiao_bo
crazyant_blog_articles_5_xiao_hong.xlsx xiao_hong
3. 使用pd.concat进行合并
1
2
|
df_merged = pd.concat(df_list) No output |
1
|
df_merged.shape |
(258, 4)
1
|
df_merged.head() |
id title tags username
0 2585 Tensorflow怎样接收变长列表特征 python,tensorflow,特征工程 xiao_shuai
1 2583 Pandas实现数据的合并concat pandas,python,数据分析 xiao_shuai
2 2574 Pandas的Index索引有什么用途? pandas,python,数据分析 xiao_shuai
3 2564 机器学习常用数据集大全 python,机器学习 xiao_shuai
4 2561 一个数据科学家的修炼路径 数据分析 xiao_shuai
1
|
df_merged[ "username" ].value_counts() |
xiao_hong 43
xiao_bo 43
xiao_shuai 43
xiao_lei 43
xiao_wang 43
xiao_ming 43
Name: username, dtype: int64
xiao_hong 43xiao_bo 43xiao_shuai 43xiao_lei 43xiao_wang 43xiao_ming 43Name: username, dtype: int64
4. 将合并后的dataframe输出到excel
1
|
df_merged.to_excel(f "{work_dir}/crazyant_blog_articles_merged.xlsx" , index = False ) |
到此这篇关于利用python Pandas实现批量拆分Excel与合并Excel的文章就介绍到这了,更多相关Pandas批量拆分Excel与合并Excel内容请搜索服务器之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持服务器之家!
原文链接:https://blog.csdn.net/cai_and_luo/article/details/117122279