问题
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
|
/ / loss 突然变成 0 python train.py - b = 8 INFO: Using device cpu INFO: Network: 1 input channels 7 output channels (classes) Bilinear upscaling INFO: Creating dataset with 868 examples INFO: Starting training: Epochs: 5 Batch size: 8 Learning rate: 0.001 Training size: 782 Validation size: 86 Checkpoints: True Device: cpu Images scaling: 1 Epoch 1 / 5 : 10 % |██████████████▏ | 80 / 782 [ 01 : 33 < 13 : 21 , 1.14s / img, loss (batch) = 0.886I NFO: Validation cross entropy: 1.86862473487854 Epoch 1 / 5 : 20 % |███████████████████████████▊ | 160 / 782 [ 03 : 34 < 11 : 51 , 1.14s / img, loss (batch) = 2.35e - 7I NFO: Validation cross entropy: 5.887489884504049e - 10 Epoch 1 / 5 : 31 % |███████████████████████████████████████████▌ | 240 / 782 [ 05 : 41 < 11 : 29 , 1.27s / img, loss (batch) = 0I NFO: Validation cross entropy: 0.0 Epoch 1 / 5 : 41 % |██████████████████████████████████████████████████████████ | 320 / 782 [ 07 : 49 < 09 : 16 , 1.20s / img, loss (batch) = 0I NFO: Validation cross entropy: 0.0 Epoch 1 / 5 : 51 % |████████████████████████████████████████████████████████████████████████▋ | 400 / 782 [ 09 : 55 < 07 : 31 , 1.18s / img, loss (batch) = 0I NFO: Validation cross entropy: 0.0 Epoch 1 / 5 : 61 % |███████████████████████████████████████████████████████████████████████████████████████▏ | 480 / 782 [ 12 : 02 < 05 : 58 , 1.19s / img, loss (batch) = 0I NFO: Validation cross entropy: 0.0 Epoch 1 / 5 : 72 % |█████████████████████████████████████████████████████████████████████████████████████████████████████▋ | 560 / 782 [ 14 : 04 < 04 : 16 , 1.15s / img, loss (batch) = 0I NFO: Validation cross entropy: 0.0 Epoch 1 / 5 : 82 % |████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▏ | 640 / 782 [ 16 : 11 < 02 : 49 , 1.20s / img, loss (batch) = 0I NFO: Validation cross entropy: 0.0 Epoch 1 / 5 : 92 % |██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▋ | 720 / 782 [ 18 : 21 < 01 : 18 , 1.26s / img, loss (batch) = 0I NFO: Validation cross entropy: 0.0 Epoch 1 / 5 : 94 % |█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▋ | 736 / 782 [ 19 : 17 < 01 : 12 , 1.57s / img, loss (batch) = 0 ] Traceback (most recent call last): File "train.py" , line 182 , in <module> val_percent = args.val / 100 ) File "train.py" , line 66 , in train_net for batch in train_loader: File "/public/home/lidd/.conda/envs/lgg2/lib/python3.6/site-packages/torch/utils/data/dataloader.py" , line 819 , in __next__ return self ._process_data(data) File "/public/home/lidd/.conda/envs/lgg2/lib/python3.6/site-packages/torch/utils/data/dataloader.py" , line 846 , in _process_data data.reraise() File "/public/home/lidd/.conda/envs/lgg2/lib/python3.6/site-packages/torch/_utils.py" , line 385 , in reraise raise self .exc_type(msg) RuntimeError: Caught RuntimeError in DataLoader worker process 4. Original Traceback (most recent call last): File "/public/home/lidd/.conda/envs/lgg2/lib/python3.6/site-packages/torch/utils/data/_utils/worker.py" , line 178 , in _worker_loop data = fetcher.fetch(index) File "/public/home/lidd/.conda/envs/lgg2/lib/python3.6/site-packages/torch/utils/data/_utils/fetch.py" , line 47 , in fetch return self .collate_fn(data) File "/public/home/lidd/.conda/envs/lgg2/lib/python3.6/site-packages/torch/utils/data/_utils/collate.py" , line 74 , in default_collate return {key: default_collate([d[key] for d in batch]) for key in elem} File "/public/home/lidd/.conda/envs/lgg2/lib/python3.6/site-packages/torch/utils/data/_utils/collate.py" , line 74 , in <dictcomp> return {key: default_collate([d[key] for d in batch]) for key in elem} File "/public/home/lidd/.conda/envs/lgg2/lib/python3.6/site-packages/torch/utils/data/_utils/collate.py" , line 55 , in default_collate return torch.stack(batch, 0 , out = out) RuntimeError: Expected object of scalar type Double but got scalar type Byte for sequence element 4 in sequence argument at position #1 'tensors' |
交叉熵损失函数是衡量输出与标签之间的损失,通过求导确定梯度下降的方向。
loss突然变为0,有两种可能性。
一是因为预测输出为0,二是因为标签为0。
如果是因为标签为0,那么一开始loss就可能为0.
检查参数初始化
检查前向传播的网络
检查loss的计算格式
检查梯度下降
是否出现梯度消失。
实际上是标签出了错误
补充:pytorch训练出现loss=na
遇到一个很坑的情况,在pytorch训练过程中出现loss=nan的情况
有以下几种可能:
1.学习率太高。
2.loss函数有问题
3.对于回归问题,可能出现了除0 的计算,加一个很小的余项可能可以解决
4.数据本身,是否存在Nan、inf,可以用np.isnan(),np.isinf()检查一下input和target
5.target本身应该是能够被loss函数计算的,比如sigmoid激活函数的target应该大于0,同样的需要检查数据集
以上为个人经验,希望能给大家一个参考,也希望大家多多支持服务器之家。如有错误或未考虑完全的地方,望不吝赐教。
原文链接:https://blog.csdn.net/weixin_43850408/article/details/106047968