脚本之家,脚本语言编程技术及教程分享平台!
分类导航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服务器之家 - 脚本之家 - Python - PyTorch 如何设置随机数种子使结果可复现

PyTorch 如何设置随机数种子使结果可复现

2021-10-29 09:16浅笑顾盼 Python

这篇文章主要介绍了PyTorch 设置随机数种子使结果可复现操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

由于在模型训练的过程中存在大量的随机操作,使得对于同一份代码,重复运行后得到的结果不一致。

因此,为了得到可重复的实验结果,我们需要对随机数生成器设置一个固定的种子。

CUDNN

cudnn中对卷积操作进行了优化,牺牲了精度来换取计算效率。如果需要保证可重复性,可以使用如下设置:

?
1
2
3
from torch.backends import cudnn
cudnn.benchmark = False            # if benchmark=True, deterministic will be False
cudnn.deterministic = True

不过实际上这个设置对精度影响不大,仅仅是小数点后几位的差别。所以如果不是对精度要求极高,其实不太建议修改,因为会使计算效率降低。

Pytorch

?
1
2
3
torch.manual_seed(seed)            # 为CPU设置随机种子
torch.cuda.manual_seed(seed)       # 为当前GPU设置随机种子
torch.cuda.manual_seed_all(seed)   # 为所有GPU设置随机种子

Python & Numpy

如果读取数据的过程采用了随机预处理(如RandomCrop、RandomHorizontalFlip等),那么对python、numpy的随机数生成器也需要设置种子。

?
1
2
3
4
import random
import numpy as np
random.seed(seed)
np.random.seed(seed)

Dataloader

如果dataloader采用了多线程(num_workers > 1), 那么由于读取数据的顺序不同,最终运行结果也会有差异。

也就是说,改变num_workers参数,也会对实验结果产生影响。

目前暂时没有发现解决这个问题的方法,但是只要固定num_workers数目(线程数)不变,基本上也能够重复实验结果。

补充:pytorch 固定随机数种子踩过的坑

1.初步固定

?
1
2
3
4
5
6
7
8
9
10
11
def setup_seed(seed):
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    torch.cuda.manual_seed(seed)
    np.random.seed(seed)
    random.seed(seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.enabled = False
    torch.backends.cudnn.benchmark = False
    #torch.backends.cudnn.benchmark = True #for accelerating the running
setup_seed(2019)

2.继续添加如下代码:

?
1
2
3
4
5
6
7
8
9
10
11
12
tensor_dataset = ImageList(opt.training_list,transform)
def _init_fn(worker_id):
    random.seed(10 + worker_id)
    np.random.seed(10 + worker_id)
    torch.manual_seed(10 + worker_id)
    torch.cuda.manual_seed(10 + worker_id)
    torch.cuda.manual_seed_all(10 + worker_id)
dataloader = DataLoader(tensor_dataset,                       
                    batch_size=opt.batchSize,    
                    shuffle=True,    
                    num_workers=opt.workers,
                    worker_init_fn=_init_fn)

3.在上面的操作之后发现加载的数据多次试验大部分一致了

但是仍然有些数据是不一致的,后来发现是pytorch版本的问题,将原先的0.3.1版本升级到1.1.0版本,问题解决

4.按照上面的操作后虽然解决了问题

但是由于将cudnn.benchmark设置为False,运行速度降低到原来的1/3,所以继续探索,最终解决方案是把第1步变为如下,同时将该部分代码尽可能放在主程序最开始的部分,例如:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import torch
import torch.nn as nn
from torch.nn import init
import pdb
import torch.nn.parallel
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
from torch.utils.data import DataLoader, Dataset
import sys
gpu_id = "3,2"
os.environ["CUDA_VISIBLE_DEVICES"] = gpu_id
print('GPU: ',gpu_id)
def setup_seed(seed):
     torch.manual_seed(seed)
     torch.cuda.manual_seed_all(seed)
     torch.cuda.manual_seed(seed)
     np.random.seed(seed)
     random.seed(seed)
     cudnn.deterministic = True
     #cudnn.benchmark = False
     #cudnn.enabled = False
 
setup_seed(2019)

以上为个人经验,希望能给大家一个参考,也希望大家多多支持服务器之家。如有错误或未考虑完全的地方,望不吝赐教。

原文链接:https://zhengyujie.cn/2291.html

延伸 · 阅读

精彩推荐