简述:
关于敏感词过滤可以看成是一种文本反垃圾算法,例如
题目:敏感词文本文件 filtered_words.txt,当用户输入敏感词语,则用 星号 * 替换,例如当用户输入「北京是个好城市」,则变成「**是个好城市」
代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
|
#coding=utf-8 def filterwords(x): with open (x, 'r' ) as f: text = f.read() print text.split( '\n' ) userinput = raw_input ( 'myinput:' ) for i in text.split( '\n' ): if i in userinput: replace_str = '*' * len (i.decode( 'utf-8' )) word = userinput.replace(i,replace_str) return word print filterwords( 'filtered_words.txt' ) |
再例如反黄系列:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
开发敏感词语过滤程序,提示用户输入评论内容,如果用户输入的内容中包含特殊的字符: 敏感词列表 li = [ "苍老师" , "东京热" ,”武藤兰”,”波多野结衣”] 则将用户输入的内容中的敏感词汇替换成 * * * ,并添加到一个列表中;如果用户输入的内容没有敏感词汇,则直接添加到上述的列表中。 content = input ( '请输入你的内容:' ) li = [ "苍老师" , "东京热" , "武藤兰" , "波多野结衣" ] i = 0 while i < 4 : for li[i] in content: li1 = content.replace( '苍老师' , '***' ) li2 = li1.replace( '东京热' , '***' ) li3 = li2.replace( '武藤兰' , '***' ) li4 = li3.replace( '波多野结衣' , '***' ) else : pass i + = 1 |
实战案例:
一道bat面试题:快速替换10亿条标题中的5万个敏感词,有哪些解决思路?
有十亿个标题,存在一个文件中,一行一个标题。有5万个敏感词,存在另一个文件。写一个程序过滤掉所有标题中的所有敏感词,保存到另一个文件中。
1、DFA过滤敏感词算法
在实现文字过滤的算法中,DFA是比较好的实现算法。DFA即Deterministic Finite Automaton,也就是确定有穷自动机。
算法核心是建立了以敏感词为基础的许多敏感词树。
python 实现DFA算法:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
|
# -*- coding:utf-8 -*- import time time1 = time.time() # DFA算法 class DFAFilter(): def __init__( self ): self .keyword_chains = {} self .delimit = '\x00' def add( self , keyword): keyword = keyword.lower() chars = keyword.strip() if not chars: return level = self .keyword_chains for i in range ( len (chars)): if chars[i] in level: level = level[chars[i]] else : if not isinstance (level, dict ): break for j in range (i, len (chars)): level[chars[j]] = {} last_level, last_char = level, chars[j] level = level[chars[j]] last_level[last_char] = { self .delimit: 0 } break if i = = len (chars) - 1 : level[ self .delimit] = 0 def parse( self , path): with open (path,encoding = 'utf-8' ) as f: for keyword in f: self .add( str (keyword).strip()) def filter ( self , message, repl = "*" ): message = message.lower() ret = [] start = 0 while start < len (message): level = self .keyword_chains step_ins = 0 for char in message[start:]: if char in level: step_ins + = 1 if self .delimit not in level[char]: level = level[char] else : ret.append(repl * step_ins) start + = step_ins - 1 break else : ret.append(message[start]) break else : ret.append(message[start]) start + = 1 return ''.join(ret) if __name__ = = "__main__" : gfw = DFAFilter() path = "F:/文本反垃圾算法/sensitive_words.txt" gfw.parse(path) text = "新疆骚乱苹果新品发布会雞八" result = gfw. filter (text) print (text) print (result) time2 = time.time() print ( '总共耗时:' + str (time2 - time1) + 's' ) |
运行效果:
1
2
3
|
新疆骚乱苹果新品发布会雞八 * * * * 苹果新品发布会 * * 总共耗时: 0.0010344982147216797s |
2、AC自动机过滤敏感词算法
AC自动机:一个常见的例子就是给出n个单词,再给出一段包含m个字符的文章,让你找出有多少个单词在文章里出现过。
简单地讲,AC自动机就是字典树+kmp算法+失配指针
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
|
# -*- coding:utf-8 -*- import time time1 = time.time() # AC自动机算法 class node( object ): def __init__( self ): self . next = {} self .fail = None self .isWord = False self .word = "" class ac_automation( object ): def __init__( self ): self .root = node() # 添加敏感词函数 def addword( self , word): temp_root = self .root for char in word: if char not in temp_root. next : temp_root. next [char] = node() temp_root = temp_root. next [char] temp_root.isWord = True temp_root.word = word # 失败指针函数 def make_fail( self ): temp_que = [] temp_que.append( self .root) while len (temp_que) ! = 0 : temp = temp_que.pop( 0 ) p = None for key,value in temp. next .item(): if temp = = self .root: temp. next [key].fail = self .root else : p = temp.fail while p is not None : if key in p. next : temp. next [key].fail = p.fail break p = p.fail if p is None : temp. next [key].fail = self .root temp_que.append(temp. next [key]) # 查找敏感词函数 def search( self , content): p = self .root result = [] currentposition = 0 while currentposition < len (content): word = content[currentposition] while word in p. next = = False and p ! = self .root: p = p.fail if word in p. next : p = p. next [word] else : p = self .root if p.isWord: result.append(p.word) p = self .root currentposition + = 1 return result # 加载敏感词库函数 def parse( self , path): with open (path,encoding = 'utf-8' ) as f: for keyword in f: self .addword( str (keyword).strip()) # 敏感词替换函数 def words_replace( self , text): """ :param ah: AC自动机 :param text: 文本 :return: 过滤敏感词之后的文本 """ result = list ( set ( self .search(text))) for x in result: m = text.replace(x, '*' * len (x)) text = m return text if __name__ = = '__main__' : ah = ac_automation() path = 'F:/文本反垃圾算法/sensitive_words.txt' ah.parse(path) text1 = "新疆骚乱苹果新品发布会雞八" text2 = ah.words_replace(text1) print (text1) print (text2) time2 = time.time() print ( '总共耗时:' + str (time2 - time1) + 's' ) |
运行结果:
1
2
3
|
新疆骚乱苹果新品发布会雞八 * * * * 苹果新品发布会 * * 总共耗时: 0.0010304450988769531s |
以上就是python实现过滤敏感词的详细内容,更多关于python 过滤敏感词的资料请关注服务器之家其它相关文章!
原文链接:https://cloud.tencent.com/developer/article/1395616