脚本之家,脚本语言编程技术及教程分享平台!
分类导航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服务器之家 - 脚本之家 - Python - python基于concurrent模块实现多线程

python基于concurrent模块实现多线程

2021-10-11 09:11三只松鼠 Python

这篇文章主要介绍了python基于concurrent模块实现多线程,帮助大家更好的理解和学习使用python,感兴趣的朋友可以了解下

引言      

  之前也写过多线程的博客,用的是 threading ,今天来讲下 python 的另外一个自带库 concurrent 。concurrent 是在 Python3.2 中引入的,只用几行代码就可以编写出线程池/进程池,并且计算型任务效率和 mutiprocessing.pool 提供的 poll 和 ThreadPoll 相比不分伯仲,而且在 IO 型任务由于引入了 Future 的概念效率要高数倍。而 threading 的话还要自己维护相关的队列防止死锁,代码的可读性也会下降,相反 concurrent 提供的线程池却非常的便捷,不用自己操心死锁以及编写线程池代码,由于异步的概念 IO 型任务也更有优势。

  concurrent 的确很好用,主要提供了 ThreadPoolExecutor 和 ProcessPoolExecutor 。一个多线程,一个多进程。但 concurrent 本质上都是对 threading 和 mutiprocessing 的封装。看它的源码可以知道,所以最底层并没有异步。
ThreadPoolExecutor 自己提供了任务队列,不需要自己写了。而所谓的线程池,它只是简单的比较当前的 threads 数量和定义的 max_workers 的大小,小于 max_workers 就允许任务创建线程执行任务。

操作多线程/多进程

1、创建线程池

通过 ThreadPoolExecutor 类创建线程池对象,max_workers 设置最大运行线程数数。使用 ThreadPoolExecutor 的好处是不用担心线程死锁问题,让多线程编程更简洁。

?
1
2
3
from concurrent import futures
 
pool = futures.ThreadPoolExecutor(max_workers = 2)

2、submit

submit(self, fn, *args, **kwargs):

  • fn:需要异步执行的函数
  • *args,**kwargs:fn 接受的参数

 该方法的作用就是提交一个可执行的回调task,它返回一个Future对象。可以看出此方法不会阻塞主线程的执行。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
import requests,datetime,time
from concurrent import futures
 
def get_request(url):
    r = requests.get(url)
    print('{}:{}  {}'.format(datetime.datetime.now(),url,r.status_code))
 
urls = ['https://www.baidu.com','https://www.tmall.com','https://www.jd.com']
pool = futures.ThreadPoolExecutor(max_workers = 2)
for url in urls:
    task = pool.submit(get_request,url)
print('{}主线程'.format(datetime.datetime.now()))
time.sleep(2)
 
 
# 输出结果
2021-03-12 15:29:10.780141:主线程
2021-03-12 15:29:10.865425:https://www.baidu.com  200
2021-03-12 15:29:10.923062:https://www.tmall.com  200
2021-03-12 15:29:10.940930:https://www.jd.com  200

3、map

map(self, fn, *iterables, timeout=None, chunksize=1):

  • fn:需要异步执行的函数
  • *iterables:可迭代对象

map 第二个参数是可迭代对象,比如 list、tuple 等,写法相对简单。map 方法也不会阻塞主线程的执行。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
import requests,datetime,time
from concurrent import futures
 
 
 
def get_request(url):
    r = requests.get(url)
    print('{}:{}  {}'.format(datetime.datetime.now(),url,r.status_code))
 
urls = ['https://www.baidu.com','https://www.tmall.com','https://www.jd.com']
pool = futures.ThreadPoolExecutor(max_workers = 2)
tasks = pool.map(get_request,urls)
print('{}:主线程'.format(datetime.datetime.now()))
time.sleep(2)
 
 
# 输出结果
2021-03-12 16:14:04.854452:主线程
2021-03-12 16:14:04.938870:https://www.baidu.com  200
2021-03-12 16:14:05.033849:https://www.jd.com  200
2021-03-12 16:14:05.048952:https://www.tmall.com  200

4、wait

如果要等待子线程执行完之后再执行主线程要怎么办呢,可以通过 wait 。

wait(fs, timeout=None, return_when=ALL_COMPLETED):

  • fs:所有任务 tasks
  • return_when:有三个参数 FIRST_COMPLETED:只要有一个子线程完成则返回结果。 FIRST_EXCEPTION:只要有一个子线程抛异常则返回结果,若没有异常则等同于ALL_COMPLETED。 ALL_COMPLETED:默认参数,等待所有子线程完成。
?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import requests,datetime,time
from concurrent import futures
 
 
def get_request(url):
    r = requests.get(url)
    print('{}:{}  {}'.format(datetime.datetime.now(),url,r.status_code))
 
urls = ['https://www.baidu.com','https://www.tmall.com','https://www.jd.com']
pool = futures.ThreadPoolExecutor(max_workers = 2)
tasks =[]
for url in urls:
    task = pool.submit(get_request,url)
    tasks.append(task)
futures.wait(tasks)
print('{}:主线程'.format(datetime.datetime.now()))
time.sleep(2)
 
 
# 输出结果
2021-03-12 16:30:13.437042:https://www.baidu.com  200
2021-03-12 16:30:13.552700:https://www.jd.com  200
2021-03-12 16:30:14.117325:https://www.tmall.com  200
2021-03-12 16:30:14.118284:主线程

5、异常处理

as_completed(fs, timeout=None)

  • 所有任务 tasks

使用 concurrent.futures 操作 多线程/多进程 过程中,很多函数报错并不会直接终止程序,而是什么都没发生。使用 as_completed 可以捕获异常,代码如下

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import requests,datetime,time
from concurrent import futures
 
def get_request(url):
    r = requests.get(url)
    print('{}:{}  {}'.format(datetime.datetime.now(),url,r.status_code))
 
urls = ['www.baidu.com','https://www.tmall.com','https://www.jd.com']
# 创建线程池
pool = futures.ThreadPoolExecutor(max_workers = 2)
tasks =[]
for url in urls:
    task = pool.submit(get_request,url)
    tasks.append(task)
# 异常捕获
errors = futures.as_completed(tasks)
for error in errors:
    # error.result()       等待子线程都完成,并抛出异常,中断主线程
    # 捕获子线程异常,不会终止主线程继续运行
    print(error.exception())
futures.wait(tasks)
print('{}:主线程'.format(datetime.datetime.now()))
time.sleep(2)
 
 
# 输出结果
Invalid URL 'www.baidu.com': No schema supplied. Perhaps you meant http://www.baidu.com?
2021-03-12 17:24:26.984933:https://www.tmall.com  200
None
2021-03-12 17:24:26.993939:https://www.jd.com  200
None
2021-03-12 17:24:26.994937:主线程

多进程编程也类似,将 ThreadPoolExecutor 替换成 ProcessPoolExecutor 。

以上就是python基于concurrent模块实现多线程的详细内容,更多关于python concurrent实现多线程的资料请关注服务器之家其它相关文章!

原文链接:https://www.cnblogs.com/shenh/p/14338173.html

延伸 · 阅读

精彩推荐