脚本之家,脚本语言编程技术及教程分享平台!
分类导航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服务器之家 - 脚本之家 - Python - pytorch实现多项式回归

pytorch实现多项式回归

2021-10-08 00:14逝去〃年华 Python

这篇文章主要为大家详细介绍了pytorch实现多项式回归,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

pytorch实现多项式回归,供大家参考,具体内容如下

一元线性回归模型虽然能拟合出一条直线,但精度依然欠佳,拟合的直线并不能穿过每个点,对于复杂的拟合任务需要多项式回归拟合,提高精度。多项式回归拟合就是将特征的次数提高,线性回归的次数使一次的,实际我们可以使用二次、三次、四次甚至更高的次数进行拟合。由于模型的复杂度增加会带来过拟合的风险,因此需要采取正则化损失的方式减少过拟合,提高模型泛化能力。希望大家可以自己动手,通过一些小的训练掌握pytorch(案例中有些观察数据格式的代码,大家可以自己注释掉)

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# 相较于一元线性回归模型,多项式回归可以很好的提高拟合精度,但要注意过拟合风险
# 多项式回归方程 f(x) = -1.13x-2.14x^2+3.12x^3-0.01x^4+0.512
import torch
import matplotlib.pyplot as plt
import numpy as np
# 数据准备(测试数据)
x = torch.linspace(-2,2,50)
print(x.shape)
y = -1.13*x - 2.14*torch.pow(x,2) + 3.15*torch.pow(x,3) - 0.01*torch.pow(x,4) + 0.512
plt.scatter(x.data.numpy(),y.data.numpy())
plt.show()
 
# 此时输入维度为4维
# 为了拼接输入数据,需要编写辅助数据,输入标量x,使其变为矩阵,使用torch.cat拼接
def features(x): # 生成矩阵
    # [x,x^2,x^3,x^4]
    x = x.unsqueeze(1)
    print(x.shape)
    return torch.cat([x ** i for i in range(1,5)], 1)
result = features(x)
print(result.shape)
# 目标公式用于计算输入特征对应的标准输出
# 目标公式的权重如下
x_weight = torch.tensor([-1.13,-2.14,3.15,-0.01]).unsqueeze(1)
b = torch.tensor([0.512])
# 得到x数据对应的标准输出
def target(x):
    return x.mm(x_weight) + b.item()
 
# 新建一个随机生成输入数据和输出数据的函数,用于生成训练数据
 
def get_batch_data(batch_size):
    # 生成batch_size个随机的x
    batch_x = torch.randn(batch_size)
    # 对于每个x要生成一个矩阵
    features_x = features(batch_x)
    target_y = target(features_x)
    return features_x,target_y
 
# 创建模型
class polynomialregression(torch.nn.module):
    def __init__(self):
        super(polynomialregression, self).__init__()
        # 输入四维度 输出一维度
        self.poly = torch.nn.linear(4,1)
 
    def forward(self, x):
        return self.poly(x)
 
# 开始训练模型
epochs = 10000
batch_size = 32
model = polynomialregression()
criterion = torch.nn.mseloss()
optimizer = torch.optim.sgd(model.parameters(),0.001)
 
for epoch in range(epochs):
    print("{}/{}".format(epoch+1,epochs))
    batch_x,batch_y = get_batch_data(batch_size)
    out = model(batch_x)
    loss = criterion(out,batch_y)
    optimizer.zero_grad()
    loss.backward()
    # 更新梯度
    optimizer.step()
    if (epoch % 100 == 0):
        print("epoch:[{}/{}],loss:{:.6f}".format(epoch,epochs,loss.item()))
    if (epoch % 1000 == 0):
        predict = model(features(x))
        print(x.shape)
        print(predict.shape)
        print(predict.squeeze(1).shape)
        plt.plot(x.data.numpy(),predict.squeeze(1).data.numpy(),"r")
        loss = criterion(predict,y)
        plt.title("loss:{:.4f}".format(loss.item()))
        plt.xlabel("x")
        plt.ylabel("y")
        plt.scatter(x,y)
        plt.show()

拟合结果:

pytorch实现多项式回归

pytorch实现多项式回归

pytorch实现多项式回归

pytorch实现多项式回归

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。

原文链接:https://blog.csdn.net/weixin_49710179/article/details/115457637

延伸 · 阅读

精彩推荐