脚本之家,脚本语言编程技术及教程分享平台!
分类导航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服务器之家 - 脚本之家 - Python - 删除pandas中产生Unnamed:0列的操作

删除pandas中产生Unnamed:0列的操作

2021-09-28 09:12敲代码的乔帮主 Python

这篇文章主要介绍了删除pandas中产生Unnamed:0列的操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

我们在数据处理,往往不小心,pandas会“主动”加上行和列的名称,我现在就遇到了这个问题。

这个是pandas中to_csv生成的数据各种拼接之后的最终数据(默认参数,index=True,column=True)

?
1
2
3
4
5
6
Unnamed: 0   ip Unnamed: 0.1 ...  766  767 class
0   0 google.com    0 ... 0.376452 0.148091  0
1   1 facebook.com    1 ... -0.044634 -0.180167  0
2   2 youtube.com    2 ... 0.172028 0.002102  0
3   3  yahoo.com    3 ... 0.286067 -0.269647  0
4   4  baidu.com    4 ... 0.034892 0.445554  0

我们可以看到,第一列 Unnamed:0 ,第三列Unnamed:0,这两列是我们不想需要的数据,产生原因是我们在生成csv文件的时候,采用的是默认参数,我们可以在生成csv时候,可以使用下面参数解决这一个问题。

to_csv()时候,设置index=False。或者加上index=True, index_label="id"

另外有其他同学会说了,我不想重复的再进行一遍数据处理工作,我就想在我们生成这个CSV中处理,一样是可以的,事实是我也是这么做的。

?
1
2
3
4
5
6
7
8
9
10
11
import pandas as pd
data = pd.read_csv('finalData.csv')
print('一共有多少个样本呢?', len(data))
print('展示样本前4个数据')
print(data.head())
print('打印样本集的其他详细信息:')
print(data.info())
print('=============================开始处理:==============================')
newData = data.loc[:, ~data.columns.str.contains('^Unnamed')]
print(newData.head())
newData.to_csv('myVecData.csv', index=False)

别忘了index=False,不然又生成一列新的这个不讨人喜欢的东西了。列处理也是一样,有参数column=False,不再赘述。

最后效果:

?
1
2
3
4
5
6
7
=============================开始处理:==============================
    ip   0   1 ...  766  767 class
0 google.com 0.282674 -0.359200 ... 0.376452 0.148091  0
1 facebook.com 0.542586 -0.390693 ... -0.044634 -0.180167  0
2 youtube.com 0.598675 -0.679748 ... 0.172028 0.002102  0
3  yahoo.com 0.212740 -0.823602 ... 0.286067 -0.269647  0
4  baidu.com 0.017386 -0.355357 ... 0.034892 0.445554  0

补充:【pandas】pandas每次使用append追加行时都生成一个Unnamed列

pandas每次使用append追加行时多出一个Unnamed列!

解决办法:

追加行数据前,read_csv函数读取数据时, 增加 index_col 参数,指定哪一行为索引行。

如:

?
1
test = pd.read_csv(filename,index_col=0)

以上为个人经验,希望能给大家一个参考,也希望大家多多支持服务器之家。如有错误或未考虑完全的地方,望不吝赐教。

原文链接:https://blank.blog.csdn.net/article/details/102980056

延伸 · 阅读

精彩推荐