脚本之家,脚本语言编程技术及教程分享平台!
分类导航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服务器之家 - 脚本之家 - Python - yyds!python中用机器学习预测 bilibili 股价走势

yyds!python中用机器学习预测 bilibili 股价走势

2021-08-23 22:41宽客邦宽客阿橙 Python

本文主要讲解用Python分析哔哩哔哩股价,通过对股票数据进行基础分析,结合运用matplotlib绘图库进行可视化,并用机器学习方法 — 蒙特卡洛模拟预测未来一年股价走势。

yyds!python中用机器学习预测 bilibili 股价走势

本文主要讲解用Python分析哔哩哔哩股价,通过对股票数据进行基础分析,结合运用matplotlib绘图库进行可视化,并用机器学习方法 — 蒙特卡洛模拟预测未来一年股价走势。

yyds!python中用机器学习预测 bilibili 股价走势

 

安装

我们需要安装numpy、pandas、matplotlib、scipy等Python数据科学工具包。

  1. #关注公众号:宽客邦,回复“源码”获取下载本文完整源码 
  2. import numpy as np 
  3. import pandas as pd 
  4. from math import sqrt 
  5. import matplotlib.pyplot as plt 
  6. from scipy.stats import norm 
  7. from pandas_datareader import data 

选取哔哩哔哩(股票代码:BILI)2018年上市到现在2021年的数据进行分析,数据来自雅虎。这里使用pd.to_datetime将数据集时间转化为时间序列,便于股票的分析。

  1. BILI = data.DataReader('BILI''yahoo',start='29/3/2018',) 
  2. BILI.index=pd.to_datetime(BILI.index

首先用head()方法看一下数据集的结构,数据集包含了股票的开盘价、收盘价、每日最低价与最高价、交易量等信息。扫描本文最下方二维码获取全部完整源码和Jupyter Notebook 文件打包下载。

yyds!python中用机器学习预测 bilibili 股价走势

 

 

开盘价走势

我们可以通过 matplotlib 进行数据可视化,plt.legend用于设置图像的图例,loc是图例位置,upper right代表图例在右上角。从图中可以看出哔哩哔哩股票在2020年12月到2021年2月之间有一个快速的增长,随后股价有所回落。

  1. plt.figure(figsize=(16,6)) 
  2. BILI['Open'].plot() 
  3. plt.legend(['BILI'],loc='upper right'

yyds!python中用机器学习预测 bilibili 股价走势

 

股票成交量

我们再来看一下股票的成交量。

  1. plt.figure(figsize=(16,6)) 
  2. BILI['Volume'].plot() 
  3. plt.legend(['BILI'],loc='upper right'
  4. plt.xlim(BILI.index[0],BILI.index[-1]) 

yyds!python中用机器学习预测 bilibili 股价走势

 

股票交易总额

我们再分析以下股票的交易总额。从图中可以很明显看出2021年1月到5月间某一天交易总额创历史新高。

  1. BILI['Total Traded']=BILI['Open']*BILI['Volume'
  2.  
  3. plt.figure(figsize=(16,6)) 
  4. BILI['Total Traded'].plot() 
  5.  
  6. plt.legend(['BILI'],loc='upper right'
  7. plt.xlim(BILI.index[0],BILI.index[-1]) 

yyds!python中用机器学习预测 bilibili 股价走势

 

下面我们来通过argmax()获取最大交易总额的日期。

  1. BILI['Total Traded'].argmax() 

输出结果如下:

  1. Timestamp('2021-02-25 00:00:00'

我们搜索新闻可以发现,2021年2月25日哔哩哔哩(NASDAQ: BILI)公布了截至2020年12月31日的第四季度和全年未经审计的财务报告。财报发布后,B站在美股的盘后股价一度涨超5%。

收盘价及其移动平均线

下面绘制BILI这支股票的收盘价及其移动平均线,我们可以用DataFrame的rolling()函数得到移动平均值。

  1. BILI['Close'].plot(figsize=(16,6),xlim=(BILI.index[0],BILI.index[-1])) 
  2. BILI['Close'].rolling(50).mean().plot(label='BILI MA50'
  3. BILI['Close'].rolling(200).mean().plot(label='BILI MA200'
  4. plt.legend() 

yyds!python中用机器学习预测 bilibili 股价走势

 

股票的收益率

下面我们计算每支股票的日收益率,并用直方图进行展示。这里了三种方法来计算日收益率,第一种是直接使用计算公式计算;第二种是导入专用于金融领域的第三方库ffn.to_returns函数计算;第三种是利用pandas自带的函数pct_change(1)进行计算。扫描本文最下方二维码获取全部完整源码和Jupyter Notebook 文件打包下载。

  1. #关注公众号:宽客邦,回复“源码”获取完整源码,直接使用计算公式计算 
  2. BILI['Return']=(BILI['Close']-BILI['Close'].shift(1))/BILI['Close'].shift(1) 
  3. BILI=BILI.dropna() 
  4.  
  5. #导入专用于金融领域的第三方库ffn.to_returns函数计算 
  6. import ffn 
  7. BILI['Return']=ffn.to_returns(BILI['Close']) 
  8.  
  9. #利用pandas自带的函数pct_change(1)进行计算 
  10. BILI['Return']=BILI['Close'].pct_change() 
  11. BILI=BILI.dropna() 
  12.  
  13. #关注公众号:宽客邦,回复“源码”获取下载本文完整源码 
  14. plt.hist(BILI['Return'],bins=50) 

yyds!python中用机器学习预测 bilibili 股价走势

 

也可以用箱图观察收益率

  1. box_df = pd.concat([BILI['Return']],axis=1) 
  2. box_df.columns = ['BILI Returns'
  3. box_df.plot(kind='box',figsize=(8,11),colormap='jet'

yyds!python中用机器学习预测 bilibili 股价走势

 

绘制股票的累计收益率

  1. BILI['Cumulative Return']=(1+BILI['Return']).cumprod() 
  2.  
  3. BILI['Cumulative Return'].plot(label='BILI',figsize=(16,8),title='Cumulative Return'
  4. plt.legend() 

yyds!python中用机器学习预测 bilibili 股价走势

 

股票的复合年均增长率和收益的年度波动率

计算股票的复合年均增长率和收益的年度波动率。

  1. #关注公众号:宽客邦,回复“源码”获取完整源码,计算复合年均增长率 
  2. days = (BILI.index[-1] - BILI.index[0]).days 
  3. cagr = ((((BILI['Adj Close'][-1]) / BILI['Adj Close'][1])) ** (365.0/days)) - 1 
  4. print ('CAGR =',str(round(cagr)*100)+"%"
  5. mu = cagr 
  6.  
  7. #计算收益的年度波动率 
  8. BILI['Returns'] = BILI['Adj Close'].pct_change() 
  9. vol = BILI['Returns']*sqrt(252) 
  10. print ("Annual Volatility =",str(round(vol,4)*100)+"%"

CAGR = 71.72%Annual Volatility = 65.14%

用蒙特卡洛模拟预测股票走势

我们来预测未来一个交易年度(252 天)内潜在价格序列演变的单一模拟,基于遵循正态分布的每日收益随机的抽取。由第一个图表中显示的单线系列表示。第二个图表绘制了一年期间这些随机每日收益的直方图。扫描本文最下方二维码获取全部完整源码和Jupyter Notebook 文件打包下载。

  1. S = BILI['Adj Close'][-1] #起始股票价格(即最后一天的实际股票价格) 
  2. T = 252 #交易天数 
  3. mu = 0.7172 #复合年均增长率 
  4. vol = 0.6514 #年度波动率 
  5.  
  6. #关注公众号:宽客邦,回复“源码”获取完整源码,使用随机正态分布创建每日收益列表 
  7. daily_returns=np.random.normal((mu/T),vol/math.sqrt(T))+1 
  8.  
  9. #关注公众号:宽客邦,回复“源码”获取下载本文完整源码 
  10. price_list = [S] 
  11.  
  12. for x in daily_returns: 
  13.     price_list.append(price_list[-1]*x) 
  14.  
  15. #生成价格序列的折线图 
  16.  
  17. plt.plot(price_list) 
  18. plt.show() 

yyds!python中用机器学习预测 bilibili 股价走势

 

生成每日收益的直方图

  1. plt.hist(daily_returns-1, 100)  
  2. plt.show() 

yyds!python中用机器学习预测 bilibili 股价走势

 

1000次模拟预测未来哔哩哔哩股价走势。

  1. import numpy as np 
  2. import math 
  3. import matplotlib.pyplot as plt 
  4. from scipy.stats import norm 
  5.  
  6. #关注公众号:宽客邦,回复“源码”获取下载本文完整源码 
  7. S = BILI['Adj Close'][-1] #起始股票价格(即最后一天的实际股票价格) 
  8. T = 252 #交易天数 
  9. mu = 0.7172 #复合年均增长率 
  10. vol = 0.6514 #年度波动率 
  11.  
  12. #选择要模拟的运行次数 - 我选择1000 
  13. for i in range(1000): 
  14.     #使用随机正态分布创建每日收益列表 
  15.     daily_returns=np.random.normal(mu/T,vol/math.sqrt(T))+1 
  16.      
  17.     #设置起始价格并创建由上述随机每日收益生成的价格列表 
  18.     price_list = [S] 
  19.      
  20.     for x in daily_returns: 
  21.         price_list.append(price_list[-1]*x) 
  22.  
  23.     #绘制来自每个单独运行的数据,我们将在最后绘制 
  24.     plt.plot(price_list) 
  25.  
  26. #显示上面创建的多个价格系列的图 
  27. plt.show() 

yyds!python中用机器学习预测 bilibili 股价走势

 

10000次模拟预测未来哔哩哔哩股价走势。

  1. import numpy as np 
  2. import math 
  3. import matplotlib.pyplot as plt 
  4. from scipy.stats import norm 
  5.  
  6. #关注公众号:宽客邦,回复“源码”获取下载本文完整源码 
  7. result = [] 
  8.  
  9. #定义变量 
  10. S = BILI['Adj Close'][-1] #起始股票价格(即最后一天的实际股票价格) 
  11. T = 252 #交易天数 
  12. mu = 0.7172 #复合年均增长率 
  13. vol = 0.6514 #年度波动率 
  14.  
  15. #选择要模拟的运行次数 - 选择10000 
  16. for i in range(10000): 
  17.     #使用随机正态分布创建每日收益列表 
  18.     daily_returns=np.random.normal(mu/T,vol/math.sqrt(T))+1 
  19.      
  20.     #设置起始价格并创建由上述随机每日收益生成的价格列表 
  21.     price_list = [S] 
  22.      
  23.     for x in daily_returns: 
  24.         price_list.append(price_list[-1]*x) 
  25.  
  26.     #绘制来自每个单独运行的数据,我们将在最后绘制 
  27.     plt.plot(price_list) 
  28.      
  29.     #将每次模拟运行的结束值附加到我们在开始时创建的空列表中 
  30.     result.append(price_list[-1]) 
  31.  
  32. #显示上面创建的多个价格系列的图 
  33. plt.show() 

yyds!python中用机器学习预测 bilibili 股价走势

 

为我们的多重模拟创建股票收盘价的直方图。

  1. plt.hist(result,bins=50) 
  2. plt.show() 

yyds!python中用机器学习预测 bilibili 股价走势

 

用numpy mean函数计算平均值的分布,以获得我们的“预期值”。

  1. print(round(np.mean(result)))  
  2. 139.18
  3. 用 numpy 的“percentile”函数来计算 5% 和 95% 的分位数 
  4. print("5% quantile =",np.percentile(result,5))print("95% quantile =",np.percentile(result,95)) 
  5.  
  6. 5% quantile = 38.33550814175252  
  7. 95% quantile = 326.44060907630484 

在直方图上快速绘制我们刚刚计算的两个分位数,以给我们一个直观的表示。

  1. plt.hist(result,bins=100) 
  2. plt.axvline(np.percentile(result,5), color='r', linestyle='dashed'
  3. plt.axvline(np.percentile(result,95), color='r', linestyle='dashed'
  4. plt.show() 

yyds!python中用机器学习预测 bilibili 股价走势

从上面的结果我们得知:哔哩哔哩(BILI)的股价有5%的可能性最终会低于38.33美元,有5%的可能性会高于326.44美元。那么你是否愿意冒5%的风险获得股价低于38.33美元的损失,来追逐股价高于326.44美元的回报收益呢?

原文地址:https://mp.weixin.qq.com/s/6In094eW_rgdqpmKIM_c_A

延伸 · 阅读

精彩推荐