1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
|
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Jun 12 09:37:38 2018 利用百度api实现图片文本识别 @author: XnCSD """ import glob from os import path import os from aip import AipOcr from PIL import Image from queue import Queue import threading import datetime def convertimg(picfile, outdir): '''调整图片大小,对于过大的图片进行压缩 picfile: 图片路径 outdir: 图片输出路径 ''' img = Image. open (picfile) width, height = img.size while (width * height > 4000000 ): # 该数值压缩后的图片大约 两百多k width = width / / 2 height = height / / 2 new_img = img.resize((width, height), Image.BILINEAR) new_img.save(path.join(outdir, os.path.basename(picfile))) def baiduOCR(ts_queue): """利用百度api识别文本,并保存提取的文字 picfile: 图片文件名 outfile: 输出文件 """ while not ts_queue.empty(): picfile = ts_queue.get() filename = path.basename(picfile) outfile = 'D:\Study\pythonProject\scrapy\IpProxy\port_zidian.txt' APP_ID = '' # 刚才获取的 ID,下同 API_KEY = '' SECRECT_KEY = '' client = AipOcr(APP_ID, API_KEY, SECRECT_KEY) i = open (picfile, 'rb' ) img = i.read() print ( "正在识别图片:\t" + filename) message = client.basicGeneral(img) # 通用文字识别,每天 50 000 次免费 # message = client.basicAccurate(img) # 通用文字高精度识别,每天 800 次免费 #print("识别成功!") i.close() try : filename1 = filename.split( '.' )[ 0 ] filename1 = ''.join(filename1) with open (outfile, 'a+' ) as fo: for text in message.get( 'words_result' ): fo.writelines( '\'' + filename1 + '\'' + ':' + text.get( 'words' ) + ',' ) fo.writelines( '\n' ) # fo.writelines("+" * 60 + '\n') # fo.writelines("识别图片:\t" + filename + "\n" * 2) # fo.writelines("文本内容:\n") # # 输出文本内容 # for text in message.get('words_result'): # fo.writelines(text.get('words') + '\n') # fo.writelines('\n' * 2) os.remove(filename) print ( "识别成功!" ) except : print ( '识别失败' ) print ( "文本导出成功!" ) print () def duqu_tupian( dir ): ts_queue = Queue( 10000 ) outdir = dir # if path.exists(outfile): # os.remove(outfile) if not path.exists(outdir): os.mkdir(outdir) print ( "压缩过大的图片..." ) # 首先对过大的图片进行压缩,以提高识别速度,将压缩的图片保存与临时文件夹中 try : for picfile in glob.glob(r "D:\Study\pythonProject\scrapy\IpProxy\端口\*" ): convertimg(picfile, outdir) print ( "图片识别..." ) for picfile in glob.glob( "tmp/*" ): ts_queue.put(picfile) #baiduOCR(picfile, outfile) #os.remove(picfile) print ( '图片文本提取结束!文本输出结果位于文件中。' ) #os.removedirs(outdir) return ts_queue except : print ( '失败' ) if __name__ = = "__main__" : start = datetime.datetime.now().replace(microsecond = 0 ) t = 'tmp' s = duqu_tupian(t) threads = [] for i in range ( 100 ): t = threading.Thread(target = baiduOCR, name = 'th-' + str (i), kwargs = { 'ts_queue' : s}) threads.append(t) for t in threads: t.start() for t in threads: t.join() end = datetime.datetime.now().replace(microsecond = 0 ) print ( '删除耗时:' + str (end - start)) |
速度快,准确率99百分,100里必回出错一张。
实测,识别1500张图片,还是小图片验证码大小,高清,用时30秒,不能识别150张,出错14张左右。 但总体快,不会出现乱码啥的。
以上就是python 利用百度API识别图片文字(多线程版)的详细内容,更多关于python 识别图片文字的资料请关注服务器之家其它相关文章!
原文链接:https://www.cnblogs.com/aotumandaren/p/14128757.html