一、白话分布式
什么是分布式,用最简单的话来说,就是为了较低单个服务器的压力,将功能分布在不同的机器上面,本来一个程序员可以完成一个项目:需求->设计->编码->测试
但是项目多的时候,一个人也扛不住,这就需要不同的人进行分工合作了
这就是一个简单的分布式协同工作了;
二、分布式锁
首先看一个问题,如果说某个环节被终止或者别侵占,就会发生不可知的事情
这就会出现,设计好的或者设计的半成品会被破坏,导致后面环节出错;
这时候,我们就需要引入分布式锁的概念;
何为分布式锁
当在分布式模型下,数据只有一份(或有限制),此时需要利用锁的技术控制某一时刻修改数据的进程数。
用一个状态值表示锁,对锁的占用和释放通过状态值来标识。
分布式锁的条件
- 可以保证在分布式部署的应用集群中,同一个方法在同一时间只能被一台机器上的一个线程执行。
- 这把锁要是一把可重入锁(避免死锁)
- 这把锁最好是一把阻塞锁
- 这把锁最好是一把公平锁
- 有高可用的获取锁和释放锁功能
- 获取锁和释放锁的性能要好
分布式锁的实现
分布式锁的实现由很多种,文件锁、数据库、redis等等,比较多,在实践中,还是redis做分布式锁性能会高一些;
三、redis实现分布式锁
首先看两个命令:
setnx:将 key 的值设为 value,当且仅当 key 不存在。 若给定的 key 已经存在,则 setnx 不做任何动作。 setnx 是set if not exists的简写。
1
2
3
4
5
6
7
|
127.0.0.1:6379> set lock "unlock" ok 127.0.0.1:6379> setnx lock "unlock" (integer) 0 127.0.0.1:6379> setnx lock "lock" (integer) 0 127.0.0.1:6379> |
expire:expire key seconds
为给定 key 设置生存时间,当 key 过期时(生存时间为 0 ),它会被自动删除
1
2
3
4
5
6
|
127.0.0.1:6379> expire lock 10 (integer) 1 127.0.0.1:6379> ttl lock 8 127.0.0.1:6379> get lock (nil) |
基于分布式锁的流程:
这就是一个简单的分布式锁的实现流程,具体代码实现也很简单,就不赘述了;
四、redis实现分布式锁问题
如果出现了这么一个问题:如果setnx是成功的,但是expire设置失败,那么后面如果出现了释放锁失败的问题,那么这个锁永远也不会被得到,业务将被锁死?
解决的办法:使用set的命令,同时设置锁和过期时间
set参数:
set key value [ex seconds] [px milliseconds] [nx|xx]
ex seconds:设置失效时长,单位秒
px milliseconds:设置失效时长,单位毫秒
nx:key不存在时设置value,成功返回ok,失败返回(nil)
xx:key存在时设置value,成功返回ok,失败返回(nil)
实践:
1
2
3
4
5
|
127.0.0.1:6379> set unlock "234" ex 100 nx (nil) 127.0.0.1:6379> 127.0.0.1:6379> set test "111" ex 100 nx ok |
这样就完美的解决了分布式锁的原子性。
五、用锁遇到过哪些问题?又是如何解决的?未关闭资源
由于当前线程 获取到redis 锁,处理完业务后未及时释放锁,导致其它线程会一直尝试获取锁阻塞,例如:用jedis客户端会报如下的错误信息
1redis.clients.jedis.exceptions.jedisconnectionexception: could not get a resource from the pool
redis线程池已经没有空闲线程来处理客户端命令。使用原生方法记得关闭!
解决的方法也很简单,只要我们细心一点,拿到锁的线程处理完业务及时释放锁
b的锁被a给释放了
我们知道redis实现锁的原理在于 setnx命令。当 key不存在时将 key的值设为 value ,返回值为 1;若给定的 key已经存在,则 setnx不做任何动作,返回值为 0 。
setnx key value
我们来设想一下这个场景:a、b两个线程来尝试给key mylock加锁,a线程先拿到锁(假如锁3秒后过期),b线程就在等待尝试获取锁,到这一点毛病没有。
那如果此时业务逻辑比较耗时,执行时间已经超过redis锁过期时间,这时a线程的锁自动释放(删除key),b线程检测到mylock这个key不存在,执行 setnx命令也拿到了锁。
但是,此时a线程执行完业务逻辑之后,还是会去释放锁(删除key),这就导致b线程的锁被a线程给释放了。
为避免上边的情况,一般我们在每个线程加锁时要带上自己独有的value值来标识,只释放指定value的key,否则就会出现释放锁混乱的场景
一般我们可以设置value为业务前缀_当前线程id或者uuid,只有当前value相同的才可以释放锁
锁过期了,业务还没执行完
redis分布式锁过期,而业务逻辑没执行完的场景,不过,这里换一种思路想问题,把redis锁的过期时间再弄长点不就解决了吗?
那还是有问题,我们可以在加锁的时候,手动调长redis锁的过期时间,可这个时间多长合适?业务逻辑的执行时间是不可控的,调的过长又会影响操作性能。
要是redis锁的过期时间能够自动续期就好了。
为了解决这个问题我们使用redis客户端redisson,redisson很好的解决了redis在分布式环境下的一些棘手问题,它的宗旨就是让使用者减少对redis的关注,将更多精力用在处理业务逻辑上。
redisson对分布式锁做了很好封装,只需调用api即可。
1
|
rlock lock = redissonclient.getlock( "stocklock" ); |
redisson在加锁成功后,会注册一个定时任务监听这个锁,每隔10秒就去查看这个锁,如果还持有锁,就对过期时间进行续期。默认过期时间30秒。这个机制也被叫做:“看门狗”
redis主从复制的坑
redis高可用最常见的方案就是主从复制(master-slave),这种模式也给redis分布式锁挖了一坑。
redis cluster集群环境下,假如现在a客户端想要加锁,它会根据路由规则选择一台master节点写入key mylock,在加锁成功后,master节点会把key异步复制给对应的slave节点。
如果此时redis master节点宕机从节点复制失败,为保证集群可用性,会进行主备切换,slave变为了redis master。b客户端在新的master节点上加锁成功,而a客户端也以为自己还是成功加了锁的。另外如果主从复制延迟同样也会造成加锁和解锁延迟的问题。
此时就会导致同一时间内多个客户端对一个分布式锁完成了加锁,导致各种脏数据的产生。
毕竟redis是保持的ap而非cp,如果要追求强一致性可以使用zookeeper分布式锁。
以上就是详解redis分布式锁的这些坑的详细内容,更多关于redis分布式锁的这些坑的资料请关注服务器之家其它相关文章!