对于想深入了解线性回归的童鞋,这里给出一个完整的例子,详细学完这个例子,对用scikit-learn来运行线性回归,评估模型不会有什么问题了。
1. 获取数据,定义问题
没有数据,当然没法研究机器学习啦。:) 这里我们用uci大学公开的机器学习数据来跑线性回归。
数据的介绍在这:http://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant
数据的下载地址在这:http://archive.ics.uci.edu/ml/machine-learning-databases/00294/
里面是一个循环发电场的数据,共有9568个样本数据,每个数据有5列,分别是:at(温度), v(压力), ap(湿度), rh(压强), pe(输出电力)。我们不用纠结于每项具体的意思。
我们的问题是得到一个线性的关系,对应pe是样本输出,而at/v/ap/rh这4个是样本特征, 机器学习的目的就是得到一个线性回归模型,即:
pe=θ 0 +θ 1 ∗at+θ 2 ∗v+θ 3 ∗ap+θ 4 ∗rh 而需要学习的,就是\(\theta_0, \theta_1, \theta_2, \theta_3, \theta_4\)这5个参数。
2. 整理数据
下载后的数据可以发现是一个压缩文件,解压后可以看到里面有一个xlsx文件,我们先用excel把它打开,接着“另存为“”csv格式,保存下来,后面我们就用这个csv来运行线性回归。
打开这个csv可以发现数据已经整理好,没有非法数据,因此不需要做预处理。但是这些数据并没有归一化,也就是转化为均值0,方差1的格式。也不用我们搞,后面scikit-learn在线性回归时会先帮我们把归一化搞定。
好了,有了这个csv格式的数据,我们就可以大干一场了。
3.用pandas来读取数据
我们先打开ipython notebook,新建一个notebook。当然也可以直接在python的交互式命令行里面输入,不过还是推荐用notebook。下面的例子和输出我都是在notebook里面跑的。
先把要导入的库声明了:
1
2
3
4
5
|
import matplotlib.pyplot as plt % matplotlib inline import numpy as np import pandas as pd from sklearn import datasets, linear_model |
接着我们就可以用pandas读取数据了:
1
2
|
# read_csv里面的参数是csv在你电脑上的路径,此处csv文件放在notebook运行目录下面的ccpp目录里 data = pd.read_csv( '.\ccpp\ccpp.csv' ) |
测试下读取数据是否成功:
1
2
|
#读取前五行数据,如果是最后五行,用data.tail() data.head() |
运行结果应该如下,看到下面的数据,说明pandas读取数据成功:
at | v | ap | rh | pe | |
---|---|---|---|---|---|
0 | 8.34 | 40.77 | 1010.84 | 90.01 | 480.48 |
1 | 23.64 | 58.49 | 1011.40 | 74.20 | 445.75 |
2 | 29.74 | 56.90 | 1007.15 | 41.91 | 438.76 |
3 | 19.07 | 49.69 | 1007.22 | 76.79 | 453.09 |
4 | 11.80 | 40.66 | 1017.13 | 97.20 | 464.43 |
4.准备运行算法的数据
我们看看数据的维度:
1
|
data.shape |
结果是(9568, 5)。说明我们有9568个样本,每个样本有5列。
现在我们开始准备样本特征x,我们用at, v,ap和rh这4个列作为样本特征。
1
2
|
x = data[[ 'at' , 'v' , 'ap' , 'rh' ]] x.head() |
可以看到x的前五条输出如下:
at | v | ap | rh | |
---|---|---|---|---|
0 | 8.34 | 40.77 | 1010.84 | 90.01 |
1 | 23.64 | 58.49 | 1011.40 | 74.20 |
2 | 29.74 | 56.90 | 1007.15 | 41.91 |
3 | 19.07 | 49.69 | 1007.22 | 76.79 |
4 | 11.80 | 40.66 | 1017.13 | 97.20 |
接着我们准备样本输出y, 我们用pe作为样本输出。
1
2
|
y = data[[ 'pe' ]] y.head() |
可以看到y的前五条输出如下:
pe | |
---|---|
0 | 480.48 |
1 | 445.75 |
2 | 438.76 |
3 | 453.09 |
4 | 464.43 |
5. 划分训练集和测试集
我们把x和y的样本组合划分成两部分,一部分是训练集,一部分是测试集,代码如下:
1
2
|
from sklearn.cross_validation import train_test_split x_train, x_test, y_train, y_test = train_test_split(x, y, random_state = 1 ) |
查看下训练集和测试集的维度:
1
2
3
4
|
print x_train.shape print y_train.shape print x_test.shape print y_test.shape |
结果如下:
(7176, 4)
(7176, 1)
(2392, 4)
(2392, 1)
可以看到75%的样本数据被作为训练集,25%的样本被作为测试集。
6. 运行scikit-learn的线性模型
终于到了临门一脚了,我们可以用scikit-learn的线性模型来拟合我们的问题了。scikit-learn的线性回归算法使用的是最小二乘法来实现的。代码如下:
1
2
3
|
from sklearn.linear_model import linearregression linreg = linearregression() linreg.fit(x_train, y_train) |
拟合完毕后,我们看看我们的需要的模型系数结果:
1
2
|
print linreg.intercept_ print linreg.coef_ |
输出如下:
[ 447.06297099]
[[-1.97376045 -0.23229086 0.0693515 -0.15806957]]
这样我们就得到了在步骤1里面需要求得的5个值。也就是说pe和其他4个变量的关系如下:
7. 模型评价
我们需要评估我们的模型的好坏程度,对于线性回归来说,我们一般用均方差(mean squared error, mse)或者均方根差(root mean squared error, rmse)在测试集上的表现来评价模型的好坏。
我们看看我们的模型的mse和rmse,代码如下:
1
2
3
4
5
6
7
|
#模型拟合测试集 y_pred = linreg.predict(x_test) from sklearn import metrics # 用scikit-learn计算mse print "mse:" ,metrics.mean_squared_error(y_test, y_pred) # 用scikit-learn计算rmse print "rmse:" ,np.sqrt(metrics.mean_squared_error(y_test, y_pred)) |
输出如下:
mse: 20.0804012021
rmse: 4.48111606657
得到了mse或者rmse,如果我们用其他方法得到了不同的系数,需要选择模型时,就用mse小的时候对应的参数。
比如这次我们用at, v,ap这3个列作为样本特征。不要rh, 输出仍然是pe。代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
|
x = data[[ 'at' , 'v' , 'ap' ]] y = data[[ 'pe' ]] x_train, x_test, y_train, y_test = train_test_split(x, y, random_state = 1 ) from sklearn.linear_model import linearregression linreg = linearregression() linreg.fit(x_train, y_train) #模型拟合测试集 y_pred = linreg.predict(x_test) from sklearn import metrics # 用scikit-learn计算mse print "mse:" ,metrics.mean_squared_error(y_test, y_pred) # 用scikit-learn计算rmse print "rmse:" ,np.sqrt(metrics.mean_squared_error(y_test, y_pred)) |
输出如下:
mse: 23.2089074701
rmse: 4.81756239919
可以看出,去掉rh后,模型拟合的没有加上rh的好,mse变大了。
8. 交叉验证
我们可以通过交叉验证来持续优化模型,代码如下,我们采用10折交叉验证,即cross_val_predict中的cv参数为10:
1
2
3
4
5
6
7
8
|
x = data[[ 'at' , 'v' , 'ap' , 'rh' ]] y = data[[ 'pe' ]] from sklearn.model_selection import cross_val_predict predicted = cross_val_predict(linreg, x, y, cv = 10 ) # 用scikit-learn计算mse print "mse:" ,metrics.mean_squared_error(y, predicted) # 用scikit-learn计算rmse print "rmse:" ,np.sqrt(metrics.mean_squared_error(y, predicted)) |
输出如下:
mse: 20.7955974619
rmse: 4.56021901469
可以看出,采用交叉验证模型的mse比第6节的大,主要原因是我们这里是对所有折的样本做测试集对应的预测值的mse,而第6节仅仅对25%的测试集做了mse。两者的先决条件并不同。
9. 画图观察结果
这里画图真实值和预测值的变化关系,离中间的直线y=x直接越近的点代表预测损失越低。代码如下:
1
2
3
4
5
6
|
fig, ax = plt.subplots() ax.scatter(y, predicted) ax.plot([y. min (), y. max ()], [y. min (), y. max ()], 'k--' , lw = 4 ) ax.set_xlabel( 'measured' ) ax.set_ylabel( 'predicted' ) plt.show() |
输出的图像如下:
完整的jupyter-notebook代码参看我的github。
以上就是用scikit-learn和pandas学习线性回归的过程,希望可以对初学者有所帮助。也希望大家多多支持服务器之家。
原文链接:https://www.cnblogs.com/pinard/p/6016029.html