服务器之家:专注于服务器技术及软件下载分享
分类导航

PHP教程|ASP.NET教程|Java教程|ASP教程|编程技术|正则表达式|C/C++|IOS|C#|Swift|Android|VB|R语言|JavaScript|易语言|vb.net|

服务器之家 - 编程语言 - Java教程 - java回溯算法解数独问题

java回溯算法解数独问题

2021-07-10 15:34天涯泪小武 Java教程

这篇文章主要为大家详细介绍了java回溯算法解数独问题,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

本文实例为大家分享了java回溯算法解数独问题,供大家参考,具体内容如下

下面来详细讲一下如何用回溯算法来解数独问题。

下图是一个数独题,也是号称世界上最难的数独。当然了,对于计算机程序来说,只要算法是对的,难不难就不知道了,反正计算机又不累。回溯算法基本上就是穷举,解这种数独类的问题逻辑比较简单。

java回溯算法解数独问题

不管算法懂不懂,先把类建出来,变量定义好,那放大学试卷上就是可以拿两分了。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
package shudu;
 
/**
 * created by wolf on 2016/3/17.
 */
public class sudoku {
 private int[][] matrix;
 public sudoku(int[][] matrix) {
  this.matrix = matrix;
 }
 
 public static void main(string[] args) {
  // 号称世界上最难数独
  int[][] sudoku = {
    {8, 0, 0, 0, 0, 0, 0, 0, 0},
    {0, 0, 3, 6, 0, 0, 0, 0, 0},
    {0, 7, 0, 0, 9, 0, 2, 0, 0},
    {0, 5, 0, 0, 0, 7, 0, 0, 0},
    {0, 0, 0, 0, 4, 5, 7, 0, 0},
    {0, 0, 0, 1, 0, 0, 0, 3, 0},
    {0, 0, 1, 0, 0, 0, 0, 6, 8},
    {0, 0, 8, 5, 0, 0, 0, 1, 0},
    {0, 9, 0, 0, 0, 0, 4, 0, 0}};
  sudoku s = new sudoku(sudoku);
  s.backtrace(0, 0);
 }
 
 /**
  * 数独算法
  * @param i
  * 行号
  * @param j
  * 列号
  */
 private void backtrace(int i, int j) {
 
 }
}

用一个二维数组来存储这个矩阵,然后定义一个方法来计算。方法里有两个属性——行号和列号。

我们的原理就是从第0行0列开始,依次往里面填入1-9之间的数字,然后判断填入的这个数字是否能放进去(该行该列和它所在的小九宫格是否有重复数字)。如果能放进去,那么就继续用1-9去试该行的下一列。一直到该行的最后一列,然后换行继续重复上面的步骤(也就是执行backtrace方法)。一直执行到最后一个空格,也就是i=8,j=8的时候,且最后这个空格所放的值也完全符合规则,那么此时就算完成,不用再继续调用backtrace方法了,输出正确解即可。

java回溯算法解数独问题

所以回溯法样子看起来是这样的。给第一个空格填1-9中任何一个,开始判断,如果ok,然后进入下一层,如果不ok,就断掉了。下一层还是从1-9开始试,然后ok,不ok……当最终目标达到时,空格已填满又满足条件,那么中断该分支,输出结果。

继续我们的程序。

由于有些位置已经有数字了,所以我们需要判断,如果该坑已经有人蹲了,那么就把列号j加1,进入下一列。如果到第8列了,就换行。

修改程序如下:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
package shudu;
 
/**
 * created by wolf on 2016/3/17.
 */
public class sudoku {
 private int[][] matrix;
 
 public sudoku(int[][] matrix) {
  this.matrix = matrix;
 }
 
 public static void main(string[] args) {
  // 号称世界上最难数独
  int[][] sudoku = {
    {8, 0, 0, 0, 0, 0, 0, 0, 0},
    {0, 0, 3, 6, 0, 0, 0, 0, 0},
    {0, 7, 0, 0, 9, 0, 2, 0, 0},
    {0, 5, 0, 0, 0, 7, 0, 0, 0},
    {0, 0, 0, 0, 4, 5, 7, 0, 0},
    {0, 0, 0, 1, 0, 0, 0, 3, 0},
    {0, 0, 1, 0, 0, 0, 0, 6, 8},
    {0, 0, 8, 5, 0, 0, 0, 1, 0},
    {0, 9, 0, 0, 0, 0, 4, 0, 0}};
  sudoku s = new sudoku(sudoku);
  s.backtrace(0, 0);
 }
 
 /**
  * 数独算法
  *
  * @param i 行号
  * @param j 列号
  */
 private void backtrace(int i, int j) {
  //如果i行j列是空格,那么才进入给空格填值的逻辑
  if (matrix[i][j] == 0) {
   for (int k = 1; k <= 9; k++) {
    //判断给i行j列放1-9中的任意一个数是否能满足规则
    if (check(i, j, k)) {
     //将该值赋给该空格,然后进入下一个空格
     matrix[i][j] = k;
     backtrace(i, j + 1);
    }
   }
  } else {
   //如果该位置已经有值了,就进入下一个空格进行计算
   backtrace(i, j + 1);
  }
 }
 
 /**
  * 判断给某行某列赋值是否符合规则
  *
  * @param row 被赋值的行号
  * @param line 被赋值的列号
  * @param number 赋的值
  * @return
  */
 private boolean check(int row, int line, int number) {
  //判断该行该列是否有重复数字
  for (int i = 0; i < 9; i++) {
   if (matrix[row][i] == number || matrix[i][line] == number) {
    return false;
   }
  }
  //判断小九宫格是否有重复
  int temprow = row / 3;
  int templine = line / 3;
  for (int i = 0; i < 3; i++) {
   for (int j = 0; j < 3; j++) {
    if (matrix[temprow * 3 + i][templine * 3 + j] == number) {
     return false;
    }
   }
  }
 
  return true;
 }
}

此时已经写好了判断某行某列赋某个值是否ok的方法,通过该方法就能校验出数字是否能放到该位置。
还缺少的是边界值的判断,就是当已经到最后一列了,还没到最后一行时,需要对行号加1,然后恢复列号为0。

修改一下backtrace方法,增加边界值判断。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
package shudu;
 
/**
 * created by wolf on 2016/3/17.
 */
public class sudoku {
 private int[][] matrix;
 
 public sudoku(int[][] matrix) {
  this.matrix = matrix;
 }
 
 public static void main(string[] args) {
  // 号称世界上最难数独
  int[][] sudoku = {
    {8, 0, 0, 0, 0, 0, 0, 0, 0},
    {0, 0, 3, 6, 0, 0, 0, 0, 0},
    {0, 7, 0, 0, 9, 0, 2, 0, 0},
    {0, 5, 0, 0, 0, 7, 0, 0, 0},
    {0, 0, 0, 0, 4, 5, 7, 0, 0},
    {0, 0, 0, 1, 0, 0, 0, 3, 0},
    {0, 0, 1, 0, 0, 0, 0, 6, 8},
    {0, 0, 8, 5, 0, 0, 0, 1, 0},
    {0, 9, 0, 0, 0, 0, 4, 0, 0}};
  sudoku s = new sudoku(sudoku);
  s.backtrace(0, 0);
 }
 
 /**
  * 数独算法
  *
  * @param i 行号
  * @param j 列号
  */
 private void backtrace(int i, int j) {
  if (i == 8 && j == 9) {
   //已经成功了,打印数组即可
   system.out.println("获取正确解");
   printarray();
   return;
  }
 
  //已经到了列末尾了,还没到行尾,就换行
  if (j == 9) {
   i++;
   j = 0;
  }
 
  //如果i行j列是空格,那么才进入给空格填值的逻辑
  if (matrix[i][j] == 0) {
   for (int k = 1; k <= 9; k++) {
    //判断给i行j列放1-9中的任意一个数是否能满足规则
    if (check(i, j, k)) {
     //将该值赋给该空格,然后进入下一个空格
     matrix[i][j] = k;
     backtrace(i, j + 1);
    }
   }
  } else {
   //如果该位置已经有值了,就进入下一个空格进行计算
   backtrace(i, j + 1);
  }
 }
 
 /**
  * 判断给某行某列赋值是否符合规则
  *
  * @param row 被赋值的行号
  * @param line 被赋值的列号
  * @param number 赋的值
  * @return
  */
 private boolean check(int row, int line, int number) {
  //判断该行该列是否有重复数字
  for (int i = 0; i < 9; i++) {
   if (matrix[row][i] == number || matrix[i][line] == number) {
    return false;
   }
  }
  //判断小九宫格是否有重复
  int temprow = row / 3;
  int templine = line / 3;
  for (int i = 0; i < 3; i++) {
   for (int j = 0; j < 3; j++) {
    if (matrix[temprow * 3 + i][templine * 3 + j] == number) {
     return false;
    }
   }
  }
 
  return true;
 }
 
 /**
  * 打印矩阵
  */
 public void printarray() {
  for (int i = 0; i < 9; i++) {
   for (int j = 0; j < 9; j++) {
    system.out.print(matrix[i][j] + " ");
   }
   system.out.println();
  }
  system.out.println();
 }
}

可以看到,判断成功的标志是行号为8,且列号为9时,认为找到了正确解。为什么是9呢,因为在check(i,j,k)那一步,通过了的话,将值k赋给最后一个空格,此时并没有中断程序,而且进入了下一层循环backtrace(i,j + 1),所以i为8j为9时才是终解。程序到这里,运行一下看看,发现并没有任何输出值,并没有找到正确解,why?

下面要讲的就是该程序最关键的地方,也是比较难以理解的地方,就是对根节点的初始化。回溯算法讲究的是一条道走到黑,不撞南墙不回头,并且把所有的道都走完。

我们把问题简单化,譬如一共只有两个空格,只能放0和1,正确答案是00和11.我们给第一个空格放了0,此时我们不知道是否放了0之后,后面是否能完全正确的走完全程。就像走迷宫一样,你选择了第一个岔道,此时有可能第一个岔道就是错的,后面无论怎么走都对了不了,也有可能有多条道可以走。那么我们的做法是先第一步放0,发现没问题(符合只能放0和1的规则),然后走第二步,第二步如果走对了,那就直接走出去了,获得了一次正确的解(00)。如果第二步是个死胡同(01),那就要回头了,就是要回到原点,把第一步初始化一下,然后第一步走1,然后再继续后面的步骤。所以无论怎么样,你都需要在第二步走完之后,把第一步走的值给清掉,回归到原点。这样才能找到所有的正确路线。

问题放大一下,有n步(n未知),第一步有1-9共9种情况,第一步放了1,后面还有未知的步,那无论后面成功与否,你肯定都要去试第一步放2-9之间的数字。

看第51行for循环那里,第一次将数字1赋给第一个空格。然后判断是否ok,如果ok了,就进入第二个空格去了,后面具体走多少步我们就不管了,我们只需要在后面的走完之后,初始化第一个空格就行了。那要是不ok呢,不ok当然就不用管他了,这一层走完就没下文了,等于该分支就断了。所以我们要在第55行后面加一句初始化的操作matrix[i][j]=0.

完整代码如下:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
package shudu;
 
/**
 * created by wolf on 2016/3/17.
 */
public class sudoku {
 private int[][] matrix;
 
 public sudoku(int[][] matrix) {
  this.matrix = matrix;
 }
 
 public static void main(string[] args) {
  // 号称世界上最难数独
  int[][] sudoku = {
    {8, 0, 0, 0, 0, 0, 0, 0, 0},
    {0, 0, 3, 6, 0, 0, 0, 0, 0},
    {0, 7, 0, 0, 9, 0, 2, 0, 0},
    {0, 5, 0, 0, 0, 7, 0, 0, 0},
    {0, 0, 0, 0, 4, 5, 7, 0, 0},
    {0, 0, 0, 1, 0, 0, 0, 3, 0},
    {0, 0, 1, 0, 0, 0, 0, 6, 8},
    {0, 0, 8, 5, 0, 0, 0, 1, 0},
    {0, 9, 0, 0, 0, 0, 4, 0, 0}};
  sudoku s = new sudoku(sudoku);
  s.backtrace(0, 0);
 }
 
 /**
  * 数独算法
  *
  * @param i 行号
  * @param j 列号
  */
 private void backtrace(int i, int j) {
  if (i == 8 && j == 9) {
   //已经成功了,打印数组即可
   system.out.println("获取正确解");
   printarray();
   return;
  }
 
  //已经到了列末尾了,还没到行尾,就换行
  if (j == 9) {
   i++;
   j = 0;
  }
 
  //如果i行j列是空格,那么才进入给空格填值的逻辑
  if (matrix[i][j] == 0) {
   for (int k = 1; k <= 9; k++) {
    //判断给i行j列放1-9中的任意一个数是否能满足规则
    if (check(i, j, k)) {
     //将该值赋给该空格,然后进入下一个空格
     matrix[i][j] = k;
     backtrace(i, j + 1);
     //初始化该空格
     matrix[i][j] = 0;
    }
   }
  } else {
   //如果该位置已经有值了,就进入下一个空格进行计算
   backtrace(i, j + 1);
  }
 }
 
 /**
  * 判断给某行某列赋值是否符合规则
  *
  * @param row 被赋值的行号
  * @param line 被赋值的列号
  * @param number 赋的值
  * @return
  */
 private boolean check(int row, int line, int number) {
  //判断该行该列是否有重复数字
  for (int i = 0; i < 9; i++) {
   if (matrix[row][i] == number || matrix[i][line] == number) {
    return false;
   }
  }
  //判断小九宫格是否有重复
  int temprow = row / 3;
  int templine = line / 3;
  for (int i = 0; i < 3; i++) {
   for (int j = 0; j < 3; j++) {
    if (matrix[temprow * 3 + i][templine * 3 + j] == number) {
     return false;
    }
   }
  }
 
  return true;
 }
 
 /**
  * 打印矩阵
  */
 public void printarray() {
  for (int i = 0; i < 9; i++) {
   for (int j = 0; j < 9; j++) {
    system.out.print(matrix[i][j] + " ");
   }
   system.out.println();
  }
  system.out.println();
 }
}

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。

原文链接:https://blog.csdn.net/tianyaleixiaowu/article/details/50912924

延伸 · 阅读

精彩推荐