脚本之家,脚本语言编程技术及教程分享平台!
分类导航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服务器之家 - 脚本之家 - Python - python多进程读图提取特征存npy

python多进程读图提取特征存npy

2021-06-28 00:20业余狙击手19 Python

这篇文章主要为大家详细介绍了python多进程读图提取特征存npy,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

本文实例为大家分享了python多进程读图提取特征存npy的具体代码,供大家参考,具体内容如下

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import multiprocessing
import os, time, random
import numpy as np
import cv2
import os
import sys
from time import ctime
import tensorflow as tf
 
image_dir = r"D:/sxl/处理图片/汉字分类/train10/"  #图像文件夹路径
data_type = 'test'
save_path = r'E:/sxl_Programs/Python/CNN/npy/'  #存储路径
data_name = 'Img10'        #npy文件名
 
char_set = np.array(os.listdir(image_dir))   #文件夹名称列表
np.save(save_path+'ImgShuZi10.npy',char_set)   #文件夹名称列表
char_set_n = len(char_set)       #文件夹列表长度
 
read_process_n = 1 #进程数
repate_n = 4   #随机移动次数
data_size = 1000000 #1个npy大小
 
shuffled = True  #是否打乱
 
#可以读取带中文路径的图
def cv_imread(file_path,type=0):
 cv_img=cv2.imdecode(np.fromfile(file_path,dtype=np.uint8),-1)
 # print(file_path)
 # print(cv_img.shape)
 # print(len(cv_img.shape))
 if(type==0):
  if(len(cv_img.shape)==3):
   cv_img = cv2.cvtColor(cv_img, cv2.COLOR_BGR2GRAY)
 return cv_img
 
#多个数组按同一规则打乱数据
def ShuffledData(features,labels):
 '''
 @description:随机打乱数据与标签,但保持数据与标签一一对应
 '''
 permutation = np.random.permutation(features.shape[0])
 shuffled_features = features[permutation,:] #多维
 shuffled_labels = labels[permutation]  #1维
 return shuffled_features,shuffled_labels
 
#函数功能:简单网格
#函数要求:1.无关图像大小;2.输入图像默认为灰度图;3.参数只有输入图像
#返回数据:1x64*64维特征
def GetFeature(image):
 
 #图像大小归一化
 image = cv2.resize(image,(64,64))
 img_h = image.shape[0]
 img_w = image.shape[1]
 
 #定义特征向量
 feature = np.zeros(img_h*img_w,dtype=np.int16)
 
 for h in range(img_h):
  for w in range(img_w):
   feature[h*img_h+w] = image[h,w]
 
 return feature
 
# 写数据进程执行的代码:
def read_image_to_queue(queue):
 print('Process to write: %s' % os.getpid())
 for j,dirname in enumerate(char_set): # dirname 是文件夹名称
  label = np.where(char_set==dirname)[0][0#文件夹名称对应的下标序号
  print('序号:'+str(j),'读 '+dirname+' 文件夹...时间:',ctime() )
  for parent,_,filenames in os.walk(os.path.join(image_dir,dirname)):
   for filename in filenames:
    if(filename[-4:]!='.jpg'):
     continue
    image = cv_imread(os.path.join(parent,filename),0)
 
    # cv2.imshow(dirname,image)
    # cv2.waitKey(0)
    queue.put((image,label))
 
 for i in range(read_process_n):
  queue.put((None,-1))
 
 print('读图结束!')
 return True
  
# 读数据进程执行的代码:
def extract_feature(queue,lock,count):
 '''
 @description:从队列中取出图片进行特征提取
 @queue:先进先出队列
  lock:锁,在计数时上锁,防止冲突
  count:计数
 '''
 
 print('Process %s start reading...' % os.getpid())
 
 global data_n
 features = [] #存放提取到的特征
 labels = [] #存放标签
 flag = True #标志着进程是否结束
 while flag:
  image,label = queue.get() #从队列中获取图像和标签
 
  if len(features) >= data_size or label == -1: #特征数组的长度大于指定长度,则开始存储
 
   array_features = np.array(features) #转换成数组
   array_labels = np.array(labels)
 
   array_features,array_labels = ShuffledData(array_features,array_labels) #打乱数据
   
   lock.acquire() # 锁开始
 
   # 拆分数据为训练集,测试集
   split_x = int(array_features.shape[0] * 0.8)
   train_data, test_data = np.split(array_features, [split_x], axis=0# 拆分特征数据集
   train_labels, test_labels = np.split(array_labels, [split_x], axis=0) # 拆分标签数据集
 
   count.value += 1 #下标计数加1
   str_features_name_train = data_name+'_features_train_'+str(count.value)+'.npy'
   str_labels_name_train = data_name+'_labels_train_'+str(count.value)+'.npy'
   str_features_name_test = data_name+'_features_test_'+str(count.value)+'.npy'
   str_labels_name_test = data_name+'_labels_test_'+str(count.value)+'.npy'
 
   lock.release() # 锁释放
 
   np.save(save_path+str_features_name_train,train_data)
   np.save(save_path+str_labels_name_train,train_labels)
   np.save(save_path+str_features_name_test,test_data)
   np.save(save_path+str_labels_name_test,test_labels)
   print(os.getpid(),'save:',str_features_name_train)
   print(os.getpid(),'save:',str_labels_name_train)
   print(os.getpid(),'save:',str_features_name_test)
   print(os.getpid(),'save:',str_labels_name_test)
   features.clear()
   labels.clear()
 
  if label == -1:
   break
 
  # 获取特征向量,传入灰度图
  feature = GetFeature(image)
  features.append(feature)
  labels.append(label)
 
  # # 随机移动4次
  # for itime in range(repate_n):
  #  rMovedImage = randomMoveImage(image)
  #  feature = SimpleGridFeature(rMovedImage) # 简单网格
  #  features.append(feature)
  #  labels.append(label)
 
 print('Process %s is done!' % os.getpid())
 
if __name__=='__main__':
 time_start = time.time() # 开始计时
 
 # 父进程创建Queue,并传给各个子进程:
 image_queue = multiprocessing.Queue(maxsize=1000) #队列
 lock = multiprocessing.Lock()      #锁
 count = multiprocessing.Value('i',0)    #计数
 
 #将图写入队列进程
 write_sub_process = multiprocessing.Process(target=read_image_to_queue, args=(image_queue,))
 
 read_sub_processes = []       #读图子线程
 for i in range(read_process_n):
  read_sub_processes.append(
   multiprocessing.Process(target=extract_feature, args=(image_queue,lock,count))
  )
 
 # 启动子进程pw,写入:
 write_sub_process.start()
 
 # 启动子进程pr,读取:
 for p in read_sub_processes:
  p.start()
 
 # 等待进程结束:
 write_sub_process.join()
 for p in read_sub_processes:
  p.join()
 
 time_end=time.time()
 time_h=(time_end-time_start)/3600
 print('用时:%.6f 小时'% time_h)
 print ("读图提取特征存npy,运行结束!")

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。

原文链接:https://blog.csdn.net/sxlsxl119/article/details/89340318

延伸 · 阅读

精彩推荐