脚本之家,脚本语言编程技术及教程分享平台!
分类导航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服务器之家 - 脚本之家 - Python - python opencv实现图像边缘检测

python opencv实现图像边缘检测

2021-06-22 00:09叶舟 Python

这篇文章主要为大家详细介绍了python opencv实现图像边缘检测,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

本文利用python opencv进行图像的边缘检测,一般要经过如下几个步骤:

1、去噪

如cv2.gaussianblur()等函数;

2、计算图像梯度

图像梯度表达的是各个像素点之间,像素值大小的变化幅度大小,变化较大,则可以认为是出于边缘位置,最多可简化为如下形式:

python opencv实现图像边缘检测

3、非极大值抑制

在获得梯度的方向和大小之后,应该对整幅图像做一个扫描,去除那些非边界上的点。对每一个像素进行检查,看这个点的梯度是不是周围具有相同梯度方向的点中最大的。如下图所示:

python opencv实现图像边缘检测

4、滞后阈值

现在要确定那些边界才是真正的边界。这时我们需要设置两个阈值:minval 和maxval。当图像的灰度梯度高于maxval 时被认为是真的边界,那些低于minval 的边界会被抛弃。如果介于两者之间的话,就要看这个点是否与某个被确定为真正的边界点相连,如果是就认为它也是边界点,如果不是就抛弃。如下图:

python opencv实现图像边缘检测

在python opencv接口中,提供了canny函数,可以对图像进行一键执行边缘检测。 

接下来,利用canny函数进行边缘检测的实验。

canny函数需要指定几个参数:

1、需要进行边缘检测的原图
2、阈值下限
3、阈值上限

我们为了能够看到不同阈值范围对边缘检测结果的影响,设置了两个滑动条,来分别表示阈值上下限。

完整代码如下:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# -*- coding: utf-8 -*-
"""
created on thu sep 13 14:23:32 2018
@author: leon
内容:
对图片进行边缘检测;
添加滑动条,可自由调整阈值上下限。
"""
 
import cv2
import numpy as np
 
def nothing(x):
  pass
 
cv2.namedwindow('canny',0)
# 创建滑动条
cv2.createtrackbar('minval','canny',0,255,nothing)
cv2.createtrackbar('maxval','canny',0,255,nothing)
 
img = cv2.imread('tree.jpg',0)
 
# 高斯滤波去噪
img = cv2.gaussianblur(img,(3,3),0)
edges =img
 
k=0
while(1):
 
  key = cv2.waitkey(50) & 0xff
  if key == ord('q'):
    break
  # 读取滑动条数值
  minval = cv2.gettrackbarpos('minval','canny')
  maxval = cv2.gettrackbarpos('maxval','canny')
  edges = cv2.canny(img,minval,maxval)
  
  # 拼接原图与边缘监测结果图
  img_2 = np.hstack((img,edges))
  cv2.imshow('canny',img_2)
 
cv2.destroyallwindows()

效果如图:

python opencv实现图像边缘检测

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。

原文链接:https://blog.csdn.net/oYeZhou/article/details/82691637

延伸 · 阅读

精彩推荐