脚本之家,脚本语言编程技术及教程分享平台!
分类导航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服务器之家 - 脚本之家 - Python - Python multiprocess pool模块报错pickling error问题解决方法分析

Python multiprocess pool模块报错pickling error问题解决方法分析

2021-06-07 00:55Arkenstone Python

这篇文章主要介绍了Python multiprocess pool模块报错pickling error问题解决方法,结合实例形式分析了multiprocess pool模块报错pickling error的原因与解决方法,需要的朋友可以参考下

本文实例讲述了Python multiprocess pool模块报错pickling error问题解决方法。分享给大家供大家参考,具体如下:

问题

之前在调用class内的函数用multiprocessing模块的pool函数进行多线程处理的时候报了以下下错误信息:

PicklingError: Can't pickle <type 'function'>: attribute lookup __builtin__.function failed

查了下官方文档发现python默认只能pickle以下的类型:

  • None, True, and False
  • integers, floating point numbers, complex numbers
  • strings, bytes, bytearrays
  • tuples, lists, sets, and dictionaries containing only picklable objects
  • functions defined at the top level of a module (using def, not lambda)
  • built-in functions defined at the top level of a module
  • classes that are defined at the top level of a module
  • instances of such classes whose dict or the result of calling getstate() is picklable (see section -
  • Pickling Class Instances for details).

函数只能pickle在顶层定义的函数,很明显的class内的函数无法被pickle因此会报错。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
import multiprocessing
def work():  # top-level 函数
  print "work!"
class Foo():
  def work(self): # 非top-level函数
    print "work"
pool1 = multiprocessing.Pool(processes=4)
foo = Foo()
pool1.apply_async(foo.work)
pool1.close()
pool1.join()
# 此时报错
pool2 = multiprocessing.Pool(processes=4)
pool2.apply_async(work)
pool2.close()
pool2.join()
# 此时工作正常

解决方案

调用pathos包下的multiprocessing模块代替原生的multiprocessing。pathos中multiprocessing是用dill包改写过的,dill包可以将几乎所有python的类型都serialize,因此都可以被pickle。或者也可以自己用dill写一个(有点重复造轮子之嫌啊)

参考

1. https://stackoverflow.com/questions/8804830/python-multiprocessing-picklingerror-cant-pickle-type-function
2. https://docs.python.org/3/library/pickle.html#what-can-be-pickled-and-unpickled
3. https://github.com/uqfoundation/pathos

希望本文所述对大家Python程序设计有所帮助。

原文链接:https://www.cnblogs.com/arkenstone/p/7901129.html

延伸 · 阅读

精彩推荐