脚本之家,脚本语言编程技术及教程分享平台!
分类导航

Python|VBS|Ruby|Lua|perl|VBA|Golang|PowerShell|Erlang|autoit|Dos|bat|

服务器之家 - 脚本之家 - Python - Python关于excel和shp的使用在matplotlib

Python关于excel和shp的使用在matplotlib

2021-05-11 00:43staHuri Python

今天小编就为大家分享一篇关于Python关于excel和shp的使用在matplotlib,小编觉得内容挺不错的,现在分享给大家,具有很好的参考价值,需要的朋友一起跟随小编来看看吧

关于excel和shp的使用在matplotlib

  • 使用pandas 对excel进行简单操作
  • 使用cartopy 读取shpfile 展示到matplotlib中
  • 利用shpfile文件中的一些字段进行一些着色处理
?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @file : map02.py
# @author: huifer
# @date : 2018/6/28
import folium
import pandas as pd
import requests
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import zipfile
import cartopy.io.shapereader as shaperead
from matplotlib import cm
from cartopy.mpl.ticker import longitudeformatter, latitudeformatter
import os
dataurl = "http://image.data.cma.cn/static/doc/a/a.0012.0001/surf_chn_mul_hor_station.xlsx"
shpurl = "http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/cultural/ne_10m_admin_0_countries.zip"
def download_file(url):
  """
  根据url下载文件
  :param url: str
  """
  r = requests.get(url, allow_redirects=true)
  try:
    open(url.split('/')[-1], 'wb').write(r.content)
  except exception as e:
    print(e)
def degree_conversion_decimal(x):
  """
  度分转换成十进制
  :param x: float
  :return: integer float
  """
  integer = int(x)
  integer = integer + (x - integer) * 1.66666667
  return integer
def unzip(zip_path, out_path):
  """
  解压zip
  :param zip_path:str
  :param out_path: str
  :return:
  """
  zip_ref = zipfile.zipfile(zip_path, 'r')
  zip_ref.extractall(out_path)
  zip_ref.close()
def get_record(shp, key, value):
  countries = shp.records()
  result = [country for country in countries if country.attributes[key] == value]
  countries = shp.records()
  return result
def read_excel(path):
  data = pd.read_excel(path)
  # print(data.head(10)) # 获取几行
  # print(data.ix[data['省份']=='浙江',:].shape[0]) # 计数工具
  # print(data.sort_values('观测场拔海高度(米)',ascending=false).head(10))# 根据值排序
  # 判断经纬度是什么格式(度分 、 十进制) 判断依据 %0.2f 是否大于60
  # print(data['经度'].apply(lambda x:x-int(x)).sort_values(ascending=false).head()) # 结果判断为度分保存
  # 坐标处理
  data['经度'] = data['经度'].apply(degree_conversion_decimal)
  data['纬度'] = data['纬度'].apply(degree_conversion_decimal)
  ax = plt.axes(projection=ccrs.platecarree())
  ax.set_extent([70, 140, 15, 55])
  ax.stock_img()
  ax.scatter(data['经度'], data['纬度'], s=0.3, c='g')
  # shp = shaperead.reader('ne_10m_admin_0_countries/ne_10m_admin_0_countries.shp')
  # # 抽取函数 州:国家
  # city_list = [country for country in countries if country.attributes['admin'] == 'china']
  # countries = shp.records()
  plt.savefig('test.png')
  plt.show()
def gdp(shp_path):
  """
  gdp 着色图
  :return:
  """
  shp = shaperead.reader(shp_path)
  cas = get_record(shp, 'subregion', 'central asia')
  gdp = [r.attributes['gdp_md_est'] for r in cas]
  gdp_min = min(gdp)
  gdp_max = max(gdp)
  ax = plt.axes(projection=ccrs.platecarree())
  ax.set_extent([45, 90, 35, 55])
  for r in cas:
    color = cm.greens((r.attributes['gdp_md_est'] - gdp_min) / (gdp_max - gdp_min))
    ax.add_geometries(r.geometry, ccrs.platecarree(),
             facecolor=color, edgecolor='black', linewidth=0.5)
    ax.text(r.geometry.centroid.x, r.geometry.centroid.y, r.attributes['admin'],
        horizontalalignment='center',
        verticalalignment='center',
        transform=ccrs.geodetic())
  ax.set_xticks([45, 55, 65, 75, 85], crs=ccrs.platecarree()) # x坐标标注
  ax.set_yticks([35, 45, 55], crs=ccrs.platecarree()) # y 坐标标注
  lon_formatter = longitudeformatter(zero_direction_label=true)
  lat_formatter = latitudeformatter()
  ax.xaxis.set_major_formatter(lon_formatter)
  ax.yaxis.set_major_formatter(lat_formatter)
  plt.title('gdp test')
  plt.savefig("gdb.png")
  plt.show()
def run_excel():
  if os.path.exists("surf_chn_mul_hor_station.xlsx"):
    read_excel("surf_chn_mul_hor_station.xlsx")
  else:
    download_file(dataurl)
    read_excel("surf_chn_mul_hor_station.xlsx")
def run_shp():
  if os.path.exists("ne_10m_admin_0_countries"):
    gdp("ne_10m_admin_0_countries/ne_10m_admin_0_countries.shp")
  else:
    download_file(shpurl)
    unzip('ne_10m_admin_0_countries.zip', "ne_10m_admin_0_countries")
    gdp("ne_10m_admin_0_countries/ne_10m_admin_0_countries.shp")
if __name__ == '__main__':
  # download_file(dataurl)
  # download_file(shpurl)
  # cas = get_record('subregion', 'central asia')
  # print([r.attributes['admin'] for r in cas])
  # read_excel('surf_chn_mul_hor_station.xlsx')
  # gdp()
  run_excel()
  run_shp()

Python关于excel和shp的使用在matplotlib

Python关于excel和shp的使用在matplotlib

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对服务器之家的支持。如果你想了解更多相关内容请查看下面相关链接

原文链接:https://blog.csdn.net/staHuri/article/details/80840339

延伸 · 阅读

精彩推荐